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Abstract

We analyze question 18 of J. Lindenstrauss in [4]. We prove that
a Banach space E with a norming subspace F C E* has an equiva-
lent o(E, F)-lower semicontinuous LUR norm if, and only if, there is
a sequence {A, : n =1,2,---} of subsets of E such that, given any
x € E ande > 0, there is a o(E, F)-open half-space H and p € N such
that v € H N A, and the slice H N Ay, can be covered with countable
many sets of diameter less than . Thus E has an equivalent o(E, F)-
lower semicontinuous LUR norm if, and only if, it has another one
with separable denting faces,[8, [9] This result completely solves
four problems asked in [6, Question 6.33, p.128] extending
Troyanski’s fundamental results (see Chapter IV in [I]), and
others ones in [2] [5]. Moreover, LUR renormings are possible
at points of separable faces wich could be glued as a o-slicely
isolated family of faces [6], of the unit sphere of E. Among new
examples covered by this results are Banach spaces C(K), where K is
a Rosenthal compact space K C R i.e., a compact space of Baire one
functions on a Polish space I', with at most countably many disconti-
nuity points for every s € K, which solves three problems asked
in [6, Question 6.23, p.125]. Previously, it was only known for K
being separable too, see [3] where the o-fragmentability of C(K) was
already proved for non separable K, and a conjecture for the pointwise
lower semicontinuous and LUR renorming presented here was posed,
details will appear in [7].

For strictly convex renormings we solve a recent question of R.
Smith [17] giving a final answer to Lindenstauss question 18 in
[4], see [9] and [10]. Indeed, we prove that E admits an equivalent
o(E, F)-lower semicontinuous and strictly conver norm if, and only
if, it has another one with separable faces. A purely topological new
characterization follows for dual spaces and dual norms.
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