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Abstract

We analyze question 18 of J. Lindenstrauss in [4]. We prove that
a Banach space E with a norming subspace F ⊂ E∗ has an equiva-
lent σ(E,F )-lower semicontinuous LUR norm if, and only if, there is
a sequence {An : n = 1, 2, · · · } of subsets of E such that, given any
x ∈ E and ε > 0, there is a σ(E,F )-open half-space H and p ∈ N such
that x ∈ H ∩ Ap and the slice H ∩ Ap can be covered with countable
many sets of diameter less than ε. Thus E has an equivalent σ(E,F )-
lower semicontinuous LUR norm if, and only if, it has another one
with separable denting faces,[8, 9] This result completely solves
four problems asked in [6, Question 6.33, p.128] extending
Troyanski’s fundamental results (see Chapter IV in [1]), and
others ones in [2, 5]. Moreover, LUR renormings are possible
at points of separable faces wich could be glued as a σ-slicely
isolated family of faces [6], of the unit sphere of E. Among new
examples covered by this results are Banach spaces C(K), where K is
a Rosenthal compact space K ⊂ RΓ i.e., a compact space of Baire one
functions on a Polish space Γ, with at most countably many disconti-
nuity points for every s ∈ K, which solves three problems asked
in [6, Question 6.23, p.125]. Previously, it was only known for K
being separable too, see [3] where the σ-fragmentability of C(K) was
already proved for non separable K, and a conjecture for the pointwise
lower semicontinuous and LUR renorming presented here was posed,
details will appear in [7].

For strictly convex renormings we solve a recent question of R.
Smith [11] giving a final answer to Lindenstauss question 18 in
[4], see [9] and [10]. Indeed, we prove that E admits an equivalent
σ(E,F )-lower semicontinuous and strictly convex norm if, and only
if, it has another one with separable faces. A purely topological new
characterization follows for dual spaces and dual norms.
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[6] A. Moltó, J. Orihuela, S. Troyanski, and M. Valdivia. A non-
linear transfer technique for renorming, volume 1951 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 2009.
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