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Abstract

Explicit formulae for analyzing an experiment carried

out in an affine resolvable block design have been

given recently in Caliński and Kageyama (2008).

The purpose of the present paper is to show some

applications of this type of designs to experiments

conducted for evaluation of crop varieties, i.e., to

so-called variety trials. Attention is given to several

advantages of affine resolvable designs both in plan-

ning and analyzing variety trials. Real experimental

data are analyzed as examples.
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1. Introduction

For agricultural field experiments, especially for those with
many crop varieties, the lattice designs introduced by Yates
(1936,1940)and their further extensions to the more general
class of so-called generalized lattice (GL) designs have
become very suitable (see Patterson and Williams, 1976;
Williams, 1977; Patterson, Williams, and Hunter, 1978;
Patterson and Silvey, 1980).

In the broad class of GL designs, of particular interest are
the affine resolvable block designs, i.e., those in which every
pair of blocks from different superblocks has the same
number of treatments (varieties) in common.
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Their construction and optimality properties have been
considered by Bailey, Monod, and Morgan (1995). They
have shown that these designs exist for various numbers
of treatments (varieties) and that they are Schur-optimal
among resolvable block designs, i.e., that they are optimal
with respect to many criteria, including A-, D-, and
E-optimality.

Thestatisticalanalysisofanexperimentconducted in such
an affine resolvable block design, under a randomization
model, has been considered in a recent paper by Caliński
and Kageyama (2008).

The purpose of the present paper is to show some appli-
cationsof this type of designs to experiments conducted for
evaluation of crop varieties, i.e., to so-called variety trials.
Attention will be given to several advantages of these
designs in planning and analyzing variety trials. This willbe
illustrated by examples based on real experimental data.
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2. A randomization-derived model
Consider a variety trial carried out in an affine resolvable

design with v = sk varieties allocated in b = sr blocks, each of
k units (plots), grouped into r superblocks in such a way that
each superblock, composed of s blocks, contains all v varie-
ties, each of them exactly once, and that every pair of blocks
from different superblocks has the same number, k/s = k2/v,
of varieties in common. Suppose that the randomizations of
superblocks, of blocks within the superblocks and of plots
within the blocks have been implemented in the trialaccording
to the usual procedure.

In particular, the randomization of superblocks can be under-
stood as choosing at random a permutation of numbers
1, 2, . . . , NA, the original labels of available superblocks, and
then renumbering them with h = 1, 2, . . . , NA, according to the
order of labels in the permutation so selected. This means to
use in the experiment superblocks labeled(after randomization)
h = 1, 2, . . . , r. In practice it will be usually NA = r.
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The randomization-derived model can be written as

y = ∆
′τ +G′α+D′β + η + e, with E(y) = ∆

′τ ,(2.1)

y = [y′1,y
′

2, . . . ,y
′

r]
′ - an n × 1 vector of data concerning yield (or other

variable trait) observed on n = rv plots of the experiment;

yh = [y1h, y2h, . . . , yvh]′ - the yields observed on the v units of the super-

block h (= 1, 2, . . . , r), ordered according to the variety labels;

∆
′ = 1r ⊗ Iv; G′ = Ir ⊗ 1v; D′ = diag[D′

1 : D′

2 : · · · : D′

r];

D′

h = Nh - v × s incidence matrix describing the hth component design

(denoted by Dh);

τ = [τ1, τ2, ..., τv ]
′ - the variety parameters, their fixed effects;

α = [α1, α2, ..., αr]
′ - the superblock random effects;

β = [β′

1,β
′

2, ...,β
′

r]
′, with βh = [β1(h), β2(h), ..., βs(h)]

′ - the block random

effects;

η, e - the n × 1 vectors for the unit error and technical error random
variables.
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The whole block design (denoted by D∗) can then be described
by the v × b incidence matrix

N = ∆D′ = [N1 : N2 : · · · : N r],

where N ′

hNh = kIs, and N ′

hNh′ = (k/s)1s1
′

s, if h 6= h′.

Further, note that the design (denoted by D) by which the v

varieties are assigned to the r superblocks is described by the
v × r incidence matrix

R = ∆G′ = [1v : 1v : · · · : 1v],

i.e., it is connected and orthogonal (as is the case for any resol-
vable block design).

Because both D∗ and D of any affine resolvable design are
proper, an affine resolvable design has the orthogonal block
structure property and is generally balanced (GB) in the sense
of Nelder (1965).
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This allows the covariance (dispersion) matrix of y to be
written

Cov(y) = φ1σ
2
1 + φ2σ

2
2 + φ3σ

2
3 + φ4σ

2
4,(2.2)

where
φ1 = In − k−1D′D, φ2 = k−1D′D − v−1G′G,

φ3 = v−1G′G− n−1
1n1

′

n, φ4 = n−1
1n1

′

n

are symmetric, idempotent and pairwise orthogonal, summing
to the identity matrix, and where the scalars σ2

1, σ2
2, σ2

3 and σ2
4

represent the relevant unknown stratum variances.
In the terminology of Caliński and Kageyama (2000,

Section 4.4.1), any affine resolvable design belongs to the
class of (ρ0; ρ1; 0)-EB designs, with the efficiency factors ε0 = 1
and ε1 = (r − 1)/r, of multiplicities ρ0 = v − 1 − r(s − 1) and
ρ1 =r(s − 1), respectively. Hence, the average(harmonic mean)
efficiency factor of any such design is ε = (v − 1)/(ρ0 + ε−1

1 ρ1).
This can also be seen from Theorem 3.1 in Bailey et al. (1995)
and Example 3.2 in Caliński and Kageyama (2004).
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3. Analyses based on stratum
submodels

Considering the analysis of data from a variety trial

conducted in an affine resolvable design, it will be

interesting first to take into account the partial analy-

ses based on the submodels corresponding to

different strata of the experimental layout. In this, the

the results given in Section 3 of Caliński and Kage-

yama (2008) will be helpful.

. – p. 10/43



3.1. Intra-block submodel

Performing the analysis under the intra-block submodel

y1 = φ1y, with E(y1) = φ1∆
′τ and Cov(y1) = φ1σ

2
1,

note that the C-matrix has for this design the form

C1 = ∆φ1∆
′ = Iv − k−1NN ′ = r(L0 + ε1L1),(3.1)

of rank v − 1,

L0 = Iv−v−1
1v1

′
v−L1 and L1 = k−1NN ′−v−1r1v1

′
v,

such that

L2
0 = L0, L2

1 = L1, and L0L1 = O.
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Hence, a generalized inverse (g-inverse) of C1 can be obtained

as r−1(L0 + ε−1
1 L1). This allows the intra-block BLUE of any

contrast c′τ (where c′1v = 0) to be

(ĉ′τ )1 = c′C−

1 Q1 = r−1c′[Iv + (r − 1)−1k−1NN ′]Q1,

Q1 = ∆φ1y =
r∑

h=1

(Iv − k−1D′

hDh)yh =
r∑

h=1

(Iv − k−1NhN
′

h)yh,

and

Var[(ĉ′τ )1] = c′C−

1 cσ
2
1 = r−1c′(L0 + ε−1

1 L1)cσ
2
1

= r−1c′[Iv + (r − 1)−1k−1NN ′]cσ2
1,(3.2)

σ2
1 being the intra-block stratum variance.
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In particular, for any elementary contrast,

τi − τi′, i, i′ = 1, 2, ..., v (i 6= i′),

the variance of its intra-block BLUE gets the form

Var[(τ̂i − τi′)1] = 2[
1

r
+

r − λii′

rk(r − 1)
]σ2

1,(3.3)

where λii′ is the number of blocks in which the ith and the i′th
varieties “concur”, i.e., are both present (see also Theorem 3.6
in Bailey et al., 1995).

Usually of interest are also estimators of the variety main
effects, τi − τ· (where τ· = v−1

∑v
i=1 τi), for which

Var[(τ̂i − τ·)1] =
1

v
[
v − 1

r
+

v − k

k(r − 1)
]σ2

1 (= σ2
(τ̂i−τ·)1

, say),

constant for all varieties, i.e., for any i (= 1, 2, ..., v).
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As to the analysis of variance (ANOVA) under this submodel, it
can be written
y′φ1y = Q′

1C
−

1 Q1 + y′ψ1y, with ψ1 = φ1 − φ1∆
′C−

1 ∆φ1,

where, for the considered design,

Q′

1C
−

1 Q1 = r−1Q′

1(L0+ε−1
1 L1)Q1 = r−1Q′

1[Iv+(r−1)−1k−1NN ′]Q1

is the intra-block treatment (variety) sum of squares, on v − 1
degrees of freedom (d.f.),

y′ψ1y = y′φ1y − r−1Q′

1[Iv + (r − 1)−1k−1NN ′]Q1

is the intra-block residual sum of squares, on d1 = n − b − v + 1
d.f., giving

s2
1 = d−1

1 y′ψ1y,(3.4)

which (under this submodel) is the MINQUE of σ2
1. It can be

used to obtain an unbiased estimator of Var[(ĉ′τ )1], replacing σ2
1

there by s2
1.
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This ANOVA, assuming that y has a multivariate

normal distribution, offers a variance ratio criterion

for testing
H01 : τ ′C1τ = 0,

equivalent to E(y1) = 0 [i.e., ∆
′τ = k−1D′D∆

′τ ,

which is equivalent to τ = (kr)−1NN ′τ ].

Such criterion,

F1 = (v − 1)−1Q′
1C

−
1Q1/s

2
1,

has a noncentral F distribution with v − 1 and d1 d.f.,

and the noncentrality parameter δ1 = τ ′C1τ/σ2
1, cen-

tral if the hypothesis is true (see also Ceranka,1975).
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If H01 is rejected, one may test hypotheses

H01,c′τ : c′τ = 0 (where c′1v = 0),

using the statistic

F1,c′τ = [(ĉ′τ )1]
2/V̂ar[(ĉ′τ )1],

where

V̂ar[(ĉ′τ )1] = r−1c′[Iv + (r − 1)−1k−1NN ′]cs2
1.

It has a noncentral F distribution with 1 and d1 d.f.,

and the noncentrality parameter

δ1,c′τ = (c′τ )2/Var[(ĉ′τ )1],

the distribution being central when H01,c′τ is true.
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3.2. Inter-block-intra-superblock submodel

Going to the analysis under the inter-block-intra-superblock submodel

y2 = φ2y, with E(y2) = φ2∆
′τ and Cov(y2) = φ2σ

2
2, note that the

relevant C-matrix is

C2 = k−1NN ′ − v−1r1v1
′

v = L1, of rank b − r.(3.5)

Thus, as its g-inverse one can take Iv. From this, the inter-block-intra-

-superblock BLUE of any contrast c′τ such that c = C2s, for some s,

is (ĉ′τ )2 = c′C−

2 Q2 = c′Q2,

Q2 = ∆φ2y =

r∑

h=1

(k−1D′

hDh − v−1
1v1

′

v)yh =

r∑

h=1

(k−1NhN
′

h − v−1
1v1

′

v)yh,

and its variance
Var[(ĉ′τ )2] = c′C−

2 cσ
2
2 = c′cσ2

2,

where σ2
2 is the inter-block-intra-superblock stratum variance.
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Note here that the general formula for the inter-block-

-intra-superblock ANOVA,

y′φ2y = Q′
2C

−
2Q2 + y′ψ2y

with
ψ2 = φ2 − φ2∆

′C−
2 ∆φ2,

reduces, for the considered designs, to

y′φ2y = Q′
2C

−
2Q2 = Q′

2Q2, because ψ2 = O.

This means that this analysis is reduced to the inter-

-block-intra-superblock treatment(variety)sum of squa-

res, Q′
2Q2, on rank(L1) = b − r d.f. Thus, it provides

no residuals for estimating the stratum variance σ2
2.
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3.3. Inter-superblock submodel

Under the inter-superblock submodel

y3 = φ3y, with E(y3) = φ3∆
′τ and Cov(y3) = φ3σ

2
3,

for which the relevant C-matrix is reduced to

C3 = v−1RR′ − v−1r1v1
′

v = O.

This implies that for no function c′τ (with c 6= 0) the BLUE under
this submodel exists. Hence, the analysis under this submodel
provides no information on contrasts of variety parameters. It is
interesting only for estimating the stratum variance σ2

3, taking

s2
3 = (r − 1)−1y′ψ3y = (r − 1)−1y′φ3y,(3.6)

ψ3 = φ3 = (Ir − r−1
1r1

′

r) ⊗ v−1
1v1

′

v is of rank r − 1.
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3.4. Total-area submodel

Coming finally to the to the total area submodel

y4 = φ4y, with E(y4) = φ4∆
′τ and Cov(y4) = φ4σ

2
4,

note that it is interesting only for obtaining the BLUE of the
general parametric mean, c′τ = v−1

1
′

vτ , which is simply

(ĉ′τ )4 = n−1
1
′

ny, with Var[(ĉ′τ )4] = n−1σ2
4.

However, because no residuals are left under this submodel, no
estimation of σ2

4 is under it available (see also Caliński and
Kageyama, 2000, Section 5.3.4).
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4. A combined analysis
With results from the four strata, one becomes interested in combining

them in a way corresponding to the overall model (2.1), with

Cov(y) = φ1σ
2
1 + φ2σ

2
2 + φ3σ

2
3 + φ4σ

2
4 .

First suppose, provisionally, that the stratum variances σ2
1 and σ2

2 are

known. Then, for τ , one obtains the BLUE

τ̂ = r−1(L0Q1 + ε−1
11 w1L1Q1 + ε−1

21 w2L1Q2) + n−1
1v1

′

ny,(4.1)

ε11 = ε1 = (r − 1)/r, ε21 = 1 − ε1 = 1/r,

w1 =
ε11σ

2
2

ε11σ2
2 + ε21σ2

1

and w2 =
ε21σ

2
1

ε11σ2
2 + ε21σ2

1

.(4.2)

The covariance matrix of τ̂ is

Cov(τ̂ ) = r−1(σ2
1L0 + σ2

1ε
−1
11 w1L1 + σ2

4v
−1

1v1
′

v),(4.3)

giving Var(ĉ′τ ) = r−1c′(L0 + ε−1
11 w1L1)cσ

2
1 for the BLUE of any contrast

c′τ (c′1v = 0).
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With regard to τ̂ , two particular cases are worth mentioning.

First, note that if σ2
1 → 0, then

τ̂ → r−1(L0 + ε−1
11 L1)Q1 + n−1

1v1
′

ny,

i.e., the contribution of the inter-block-intra-superblock stratum
is negligible.

Another case of interest is σ2
1 = σ2

2. It can be shown that
then

τ̂ = r−1
r∑

h=1

(Iv − v−1
1v1

′

v)yh + n−1
1v1

′

ny = r−1
r∑

h=1

yh,

which means that the BLUE of τ reduces to ordinary variety
means, as in a randomized complete block design.
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In practice, the variances σ2
1 and σ2

2 appearing in w1 and w2 are
usually unknown and need to be estimated. As shown in Caliński
and Kageyama (2008), they can be estimated, following Nelder
(1968), using

σ̂2
1(N) = d−1

1 y′ψ1y (= s2
1)(4.4)

and

σ̂2
2(N) =

1

ρ1
[
ε21

r
(ε−1

11 Q
′

1 − ε−1
21 Q

′

2)L1(ε
−1
11 Q1 − ε−1

21 Q2) −
ε21

ε11

ρ1

d1
y′ψ1y](4.5)

(= s2
2, say).

With them,

ŵ1 =
ε11σ̂2

2(N)

ε11σ̂2
2(N) + ε21σ̂2

1(N)

and ŵ2 =
ε21σ̂2

1(N)

ε11σ̂2
2(N) + ε21σ̂2

1(N)

.(4.6)

Note that these estimates are obtainable directly, not by an ite-
rative procedure. This is an important advantage of affine resol-
vable designs.
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Note that these Nelder estimators coincide here with those obtainable

in the classic Yates (1939) – Rao (1956) approach, and are exactly the

same as those obtainable by the MML (REML) method of Patterson and

Thompson (1971, 1975), which in turn coincide with those obtainable by

the (iterated) MINQUE procedure of Rao (1972, 1979). This implies that

the intra-block residual mean square σ̂2
1(N) = s2

1 is the MINQUE of σ2
1

not only under the intra-block submodel but also under the overall model

(2.1).

It may be added, that the inter-block-intra-superblock stratum variance

σ2
2, for which there is no estimator in the analysis under the submodel

corresponding to that stratum, receives now the MINQUE, σ̂2
2(N) = s2

2,

under the overall model (2.1). Also the inter-superblock mean square s2
3

can be seen as obtainable from the relevant Nelder (1968) equation, re-

duced for any affine resolvable design to

y′ψ3y = σ2
3d

′

3, with d′3 = r − 1,

being at the same time the MINQUE of σ2
3 under (2.1).
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Now note that when the weights w1 and w2 in the formula for τ̂
are replaced by ŵ1 and ŵ2, one obtains an empirical estimator

τ̃ = r−1(L0Q1 + ε−1
11 ŵ1L1Q1 + ε−1

21 ŵ2L1Q2) + n−1
1v1

′

ny,

with the properties E(τ̃ ) = E(τ̂ ) = τ ,

Cov(τ̃ ) ∼= r−1[σ2
1L0 + σ2

1ε
−1
11 w1L1(1 + ζ) + σ2

4v
−1

1v1
′

v],(4.7)

ζ =
2(n − v − r + 1)

(b − r)(n − v − b + 1)

w2

w1
,(4.8)

as it follows from the approximation suggested by Kackar and
Harville (1984). This implies that for any contrast c′τ the empi-
rical estimator is of the form

c̃′τ = r−1c′(L0Q1 + ε−1
11 ŵ1L1Q1 + ε−1

21 ŵ2L1Q2)(4.9)

with
Var(c̃′τ ) ∼= r−1c′[L0 + ε−1

11 w1L1(1 + ζ)]cσ2
1 =

= Var(ĉ′τ ) + r−1ε−1
11 w1ζc

′L1cσ
2
1.

(4.10)
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If of interest are estimators of elementary contrasts,
their variance is

Var(τ̃i − τi′) ∼= 2

{
1

r
+

r[w1(1 + ζ) − 1] + 1

rk(r − 1)
(r − λii′)

}
σ2

1,

which reduces to Var[(ĉ′τ )1] in the extreme case of

w1 = 1 and, hence, ζ = 0.

For estimators of variety main effects, the relevant

variance is

Var(τ̃i − τ·) ∼=
1

v

[
v − 1

r
+

w1(1 + ζ) − ε11

ε11

v − k

k

]
σ2

1,

(= σ2
τ̃i−τ·

, say)

constant for any i (= 1, 2, ..., v).
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Evidently, Var(c̃′τ ) reduces to Var(ĉ′τ ) if L1c = 0. On

the other hand, if L0c = 0,

Var(c̃′τ ) ∼= r−1σ2
1w1ε

−1
11 c

′L1c(1 + ζ) = Var[(ĉ′τ )1]w1(1 + ζ).(4.11)

This shows that the approximate variance (4.11) is

smaller than Var[(ĉ′τ )1] if and only if ζ < w2/w1, which

in practice holds in most cases. If in a particular case it

does not hold, or the ratio w2/w1, and hence ζ, is close

to 0, it may be reasonable to replace ŵ1 by 1 and,

hence, ŵ2 by 0, i.e., to use (ĉ′τ )1, from the intra-block
analysis, instead of c̃′τ .
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Suppose now that one is interested in testing
H0 : τ1 = τ2 = · · · = τv.

It can be tested approximately using

F =
d1

v − 1

SS0 + SS1

y′ψ1y
,(4.12)

where
SS0 = r−1Q′

1L0Q1,

SS1 = r−1ε11[ŵ1(1+ ζ̂)]−1(ŵ1ε
−1
11 Q

′

1 + ŵ2ε
−1
21 Q

′

2)L1(ŵ1ε
−1
11 Q1 + ŵ2ε

−1
21 Q2).

Assuming the multivariate normal distribution of y, the unknown
distribution of (4.12) can be, under H0, justifiably approximated
by the central F distribution with d and d1 = n − b − v + 1 d.f.,
where

d =
2(v − 1)2

2(v − 1) +
ζ(w2 − 3w1ζ)2ρ1(ρ1 + 2)

w1w2(1 + ζ)2

.(4.13)

In practice, the unknown weights, w1 and w2, in (4.13) have to be
replaced by their estimates.
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If H0 is rejected, one may be interested in finding which of the
implied hypotheses are responsible for that. If c′τ (c′1v = 0) is
of interest, then the relevant hypothesis is

H0,c′τ : c′τ = 0.

It can be tested approximately using

Fc′τ = (c̃′τ )2/V̂ar(c̃′τ ),(4.14)

V̂ar(c̃′τ ) = r−1c′[L0 + ε−1
11 ŵ1L1(1 + ζ̂)]cs2

1

= r−1{c′c+ k−1[ε−1
11 ŵ1(1 + ζ̂) − 1]c′NN ′c}s2

1,

The unknown distribution of (4.14) can, under H0,c′τ , be appro-
ximated by the central F distribution with 1 and d1 d.f. For the
theory underlying the proposed tests see Sections 3.8.5 and
5.5.4 in Caliński and Kageyama (2000).

. – p. 29/43



5. Applications

Affine resolvable designs are often used in variety trials.

In particular, they are employed quite often in designing

variety trials organized by the Research Centre for Culti-

var Testing in Poland. The data analyzed by the presen-

ted methodology come from three series ofvariety trials

carried out, under the auspices of that Research

Centre, at various Experimental Stations for Variety

Testing spread over the country.
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5.1. Winter wheat variety trials

The first series is composed of 13 trials conducted in the
1997/1998 season with varieties of winter wheat. Each trial was
arranged in an affine resolvable design with v = 32 varieties
allocated in b = 16 blocks grouped into r = 4 superblocks
(replications), each containing s = 4 blocks of size k = 8. The
varieties were assigned to blocks in such a way that every pair
of blocks from different superblocks had the same number,

k/s = k2/v = 2, of varieties in common, satisfying the condition
for a resolvable design to be affine resolvable. The average
(harmonic mean) efficiency factor of the design was ε = 0.8857.

The layout of the design (before randomization) is shown in
Table 1.
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Table 1: The design used in the winter wheat variety trials, in its

prerandomization form

Superblock 1 Superblock 2

Block Varieties Block Varieties

1 1 5 9 13 17 21 25 29 1 1 6 11 13 18 23 28 32

2 2 6 10 14 18 22 26 30 2 2 7 12 14 19 24 25 29

3 3 7 11 15 19 23 27 31 3 3 8 9 15 20 21 26 30

4 4 8 12 16 20 24 28 32 4 4 5 10 16 17 22 27 31

Superblock 3 Superblock 4

Block Varieties Block Varieties

1 1 7 10 15 17 24 26 32 1 1 6 12 15 20 22 27 29

2 2 8 11 16 18 21 27 29 2 2 7 9 16 17 23 28 30

3 3 5 12 13 19 22 28 30 3 3 8 10 13 18 24 25 31

4 4 6 9 14 20 23 25 31 4 4 5 11 14 19 21 26 32
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To each of the trials the analyses described in Sections 3
and 4 have been applied, to data concerning the variety plot
grain yields (expressed in dt/ha).

First of all, it is interesting to look at the estimates of the stra-
tum variances σ2

1, σ2
2, and σ2

3. According to one of the basic
principles of experimental design, the “local control" (see, e.g.,
Yates, 1965), the experiment should be arrange in the field in
such a way that the plots within the blocks are as uniform as
possible, allowing for larger variation between blocks within
superblocks, and even larger between the superblocks within
the experimental field.

If this is done successfully, in the sense of cotrolling the soil
variation properly, the estimated stratum variances should satis-
fy the relation s2

1 < s2
2 < s2

3.
In fact, because the inter-superblock stratum provides no

information on contrasts of variety parameters, the relation
s2
1 < s2

2 is essential. It is satisfied by all trials except one. See
Table 2.
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Table 2: Main results characterizing the individual trials conducted in
1997/1998 with varieties of winter wheat

Loc. s2
1 s2

2 s2
3 s2

1/s2
2 ŵ1 ŵ2 ŵ2/ŵ1 ζ̂ 1−σ̂2

τ̃i−τ
·

/̂σ2
(τ̂i−τ

·
)1

1 14.0916 56.1499 164.3882 0.2510 0.9228 0.0772 0.0837 0.0160 0.0285

2 7.3535 48.0084 47.2961 0.1532 0.9514 0.0486 0.0511 0.0098 0.0180

3 21.5460 57.9498 296.9062 0.3718 0.8897 0.1103 0.1239 0.0237 0.0408

4 6.3335 33.7029 43.9610 0.1879 0.9411 0.0589 0.0626 0.0120 0.0218

5 12.0534 32.4167 87.3901 0.3718 0.8897 0.1103 0.1239 0.0237 0.0408

6 7.0324 8.1809 104.1382 0.8596 0.7773 0.2227 0.2865 0.0548 0.0823

7 13.8820 60.7914 672.8639 0.2284 0.9293 0.0707 0.0761 0.0146 0.0261

8 3.4112 23.4199 11.9333 0.1457 0.9537 0.0463 0.0486 0.0093 0.0171

9 2.6350 9.1812 150.0807 0.2870 0.9127 0.0873 0.0957 0.0183 0.0323

10 8.5663 127.6164 492.6911 0.0671 0.9781 0.0219 0.0224 0.0043 0.0081

11 17.3210 260.5125 74.6104 0.0665 0.9783 0.0217 0.0222 0.0042 0.0080

12 2.7573 2.4846 9.1957 1.1098 0.7300 0.2700 0.3699 0.0708 0.0998

13 2.7614 12.8485 28.5192 0.2149 0.9331 0.0669 0.0716 0.0137 0.0247

Locations of trials: 1–Lisewo, 2–Kochcice, 3–Głubczyce, 4–Głȩbokie, 5–Krościna Mała, 6–Uhnin,
7–Głodowo, 8–Lubinicko, 9–Masłowice, 10–Jelenia Góra, 11–Rarwino, 12–Radostowo, 13–Lubliniec

Nowy
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5.2. Winter rye variety trials

The second series of trials consists of 15 experiments

conducted in the 2004/2005 season with varieties of

winter rye. Each trial was arranged in an affine resol-

vable design with v = 18 varieties allocated in b = 12

blocks grouped intor = 4 superblocks,each containing

s = 3 blocks of size k = 6.The varieties were assigned

to blocks in such a way that every pair of blocks from

different superblockshad the samenumber of varieties,

k/s = k2/v = 2, in common. The average efficiency

factor of the design was ε = 0.8644.The main resultsof

analyzing the variety grain yields (in dt/ha) in the trials

are presented in Table 3.
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Table 3: Main results characterizing the individual trials conducted in

2004/2005 with varieties of winter rye
Loc. s2

1 s2
2 s2

3 s2
1/s2

2 ŵ1 ŵ2 ŵ2/ŵ1 ζ̂ 1−σ̂2

τ̃i−τ
·

/̂σ2
(τ̂i−τ

·
)1

1 1.9425 6.7060 1.3438 0.2897 0.9119 0.0881 0.0966 0.0286 0.0336

2 5.6874 7.3419 50.7764 0.7746 0.7948 0.2052 0.2582 0.0766 0.0783

3 3.8871 12.9295 15.0177 0.3006 0.9089 0.0911 0.1002 0.0297 0.0348

4 4.4348 14.4064 251.0461 0.3078 0.9069 0.0931 0.1026 0.0304 0.0355

5 13.2458 56.8879 93.0674 0.2328 0.9280 0.0720 0.0776 0.0230 0.0275

6 19.5452 21.8576 103.4056 0.8942 0.7704 0.2296 0.2981 0.0884 0.0876

7 5.8929 16.5910 18.4494 0.3552 0.8941 0.1059 0.1184 0.0351 0.0404

8 9.0044 1.6846 10.8603 5.3452 0.3595 0.6405 1.7817 0.5283 0.2444

9 8.4979 14.8338 3.9750 0.5729 0.8397 0.1603 0.1910 0.0566 0.0612

10 13.0511 80.4549 8.0781 0.1622 0.9487 0.0513 0.0541 0.0160 0.0196

11 7.1101 8.9196 11.2786 0.7971 0.7901 0.2099 0.2657 0.0788 0.0801

12 13.2328 13.7123 21.4874 0.9650 0.7566 0.2434 0.3217 0.0954 0.0929

13 20.9710 41.5582 269.4008 0.5046 0.8560 0.1440 0.1682 0.0499 0.0549

14 16.1390 35.3568 80.1429 0.4565 0.8679 0.1321 0.1522 0.0451 0.0504

15 2.9391 9.0495 58.6720 0.3248 0.9023 0.0977 0.1083 0.0321 0.0373

Locations of trials: 1–Masłowice, 2–Przecław, 3–Dukla, 4–Ruska Wieś, 5–Seroczyn, 6–Kościelec,
7–Krościna Mała, 8–Uhnin, 9–Rarwino, 10–Lućmierz, 11–Lubinicko, 12–Kochcice, 13–Marianowo,

14–Pokój, 15–Jelenia Góra
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5.3 Field pea variety trials

The third series of trials comprises 9 experiments

conducted in the 2006 season with varieties of field

pea. Each trial was arranged in an affine resolvable

design of the same type as that used in the previous

winter rye series of trials, i.e., with v = 18 varieties

in b = 12 blocks grouped into r = 4 superblocks,each

formed of s = 3 blocks of size k = 6. As previously,

the assignment of varieties to blocks was such that

every pair of blocks from different superblocks had

the same number of varieties, 2, in common. The

average efficiency factor was again ε = 0.8644. The

main results of the analyses are presented in Table 4.
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Table 4: Main results characterizing the individual trials conducted in
2006 with varieties of field pea

Loc. s2
1 s2

2 s2
3 s2

1/s2
2 ŵ1 ŵ2 ŵ2/ŵ1 ζ̂ 1 − σ̂2

τ̃i−τ
·

/σ̂2
(τ̂i−τ

·
)1

1 5.8483 1.4444 8.5182 4.0491 0.4256 0.5744 1.3497 0.4002 0.2192

2 4.3043 3.3614 66.6738 1.2805 0.7009 0.2991 0.4268 0.1266 0.1141

3 2.3645 20.0832 32.2441 0.1177 0.9622 0.0378 0.0392 0.0116 0.0144

4 9.7544 81.5507 500.4608 0.1196 0.9617 0.0383 0.0399 0.0118 0.0146

5 3.8668 9.2882 146.2033 0.4163 0.8781 0.1219 0.1388 0.0411 0.0465

6 1.8209 2.2772 37.7074 0.7996 0.7895 0.2105 0.2665 0.0790 0.0803

7 3.0899 38.9040 5.5707 0.0794 0.9742 0.0258 0.0265 0.0079 0.0098

8 5.6894 6.9968 21.2202 0.8131 0.7868 0.2132 0.2710 0.0804 0.0814

9 14.9739 58.9732 63.2182 0.2539 0.9220 0.0780 0.0846 0.0251 0.0298

Locations of trials: 1–Głȩbokie, 2–Kochcice, 3–Pawłowice, 4–Rychliki, 5–Karżniczka, 6–Kawȩczyn,
7–Zybiszów, 8–Czesławice, 9–Rarwino
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6. Concluding remarks
• As can be seen from the presented methods and their applications,

the affine resolvable block designs are advantageous not only

because of their desirable optimality properties, but also because

of their simplicity in the analysis of experimental data.

• As to the first properties, Bailey et al. (1995, Section 3)have shown,

referring to the analysis under the intra-block submodel, that in the

classof resolvabledesigns the affine resolvable designs are optimal

with respect to many criteria, including A-, D- and E-optimality.

• Theseoptimal propertiesof anaffine resolvabledesignarepreserved

when going from the intra-block analysis to the analysis combining

the intra-block and the inter-block-intra-superblock information,provi-

ded that the grouping of experimental units (plots) into blocks is

sufficiently successful for increasing the ratio σ2
2/σ

2
1 over 1 (i.e.,

decreasing σ2
1/σ

2
2 below 1). (See also Caliński and Kageyama, 2003,

Lemma 7.1.2 andTheorem 7.1.1,and the discussion following them.)
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• The simplicity of the analysis of any experiment conducted
in an affine resolvable block design should, additionally,
encourage researches to the use of this type of designs
when dealing with a large number of treatments (varieties).
This has already been explored by some institutions res-
ponsible for evaluation and registration of new agricultural
crop varieties.

• Results from the analyses of three series of variety trials
have shown that in the majority of cases the grouping of
plots into blocks has been successful.

• Furthermore,when there are some deviations from the basic
principles of experimental design, from the principle of local
control in particular, the combined analysis helps to arrive at
sufficiently precise inferences. This can beachieved avoiding
any numerical difficulties, such as those connected with ite-
rative procedures usually involved in analyses of experi-
ments in other than affine resolvable designs (see, e.g.,
Williams, 1977).
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