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AKSJOMAT 
 
 

W  NATURZE (PRZYRODZIE – POPULACJI) 

wszystkie zjawiska, procesy przebiegają według 
jednej funkcji (reguły, zasady, relacji). 

 
 

NATURA 
 

(POPULACJA) 



 
 

CEL BADAŃ       -      ROZPOZNAĆ FUNKCJĘ (RELACJĘ) 
 
 

I. OPIS  (Naturalny bieg NATURY) 
 

Fakty:   1) co rozpoznać ? 
 
       2) czym dysponujemy ? 
 
   3) co obserwujemy ?   

 
 
 
 
 
 
 
 
 
 
 
 



 

 
 
 
 
 

Czynniki doświadczalne

NATURA 
 

(POPULACJA) 



 
II.   WNIOSKOWANIE   - Badanie reakcji   NATURY  
 
 
COMPARATIVE  EXPERIMENTS  -  

badania (doświadczenia ) porównawcze 
 
1. Design of Comparative Experiments: Meaning? 

 
⇒    NOT experiments to determine the exact value of G. 

 
 
⇒    BUT experiments to find out if A is better than B, and, if so,  
         by how much. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              

 

 

 

 

 

 

 

Nauki  rolnicze !!!!!!!!!!  

NATURA 
 

(POPULACJA) 

STATYSTYKA 
 

MATEMATYCZNA  
 

STOSOWANA 

STATYSTYKA 
 

MATEMATYCZNA  
 

TEORETYCZNA 
 



 

1. Introduction 

 
The experiment is an important tool of research in natural sciences. Hence, 
planning, modelling and inference problems are of fundamental importance for 
every experimenter using experiments in his research work. 
 
Approaches to the model building of observations. 
 
 

- assumption (expected value +dispersion structure) – sampling ? 

 

- derivation – sampling methods 

   model assumed 
   derived model 
 



 
 
 In the first approach we assume a'priori a form of the linear model, usually 
before performing the experiment.  
 
 
The linear model and its dispersion structure are assumed to be independent 
from the type of experiment,  on the structure of the experimental material and 
on the sampling methods.  
 
Sometimes, some additional assumptions concerning dispersion structure 
(correlation, auto correlation, etc.) are added.  
 
 
The problem is how to check these assumptions.  
 
 



Derivation 
 
The model is strictly connected with a given experiment i.e., with the 

structure of its experimental material and with the method of assigning 
treatments to the units (sampling).  

 
This is given by the so-called scheme of randomization.  
 
At the beginning let us consider the factors which have an influence on the 

value of the observed data (called also observed response, observed yield). 
 

Observed response is a sum of three components:  
- a conceptual response connected with an experimental unit,  
-  a pure effect due to treatment (combinations), 
-   a technical effect connected with measurements.  
 
Additionally: additivity among these three components is assumed. 



Conceptual response 
 
Note that every unit (plot) possesses some kind of fertility which gives some 

yield in the case when treatments do not occur on a unit and in the case in 
which no treatments have an effect on the yield. This yield will be called zero 
yield (conceptual response).  

 
 
Pure effect 
 
The increase (or decrease) in zero yield due to the treatment used on the 

experimental unit will be called pure effect (due to treatment). Usually the sum 
of zero yield (conceptual response) and pure effect due to treatment is called 
the pure yield (pure response) and is often the base of the statistical analysis. 

 
 
 



Technical error 
 
Let us note that when observing the response of the unit in reality, any 

observation may be affected by a "technical  error", an error due to some 
technical inaccuracy in performing the experiment and due to some error 
connected with measurements of the response (data). This error is also called 
measurement error (cf. Neyman et al., 1935).  

 
The paper deals with the problems connected with model building for 

popular types of designed experiments. The one- factor experiments carried out 
in design with one or more blocking systems are taken into account only, i.e.  a 
block design and nested block design.  

 
The several different schemes of randomization’s (sampling) for the designs 
mentioned above will be presented. Finally,  the consequences of different 
schemes of randomization to the linear model of observation is discussed. 



Experiment (R, Ω), R - experimental material structure, Ω - treatment 
structure. 

 
The starting point of statistical considerations is the theoretical treatment plan 

of the experiment. In this plan, Ω; we take into account all the experimenter's 
suggestions concerning the statistical properties of design and the experimental 
conditions available in R.  
 
It means that plan Ω will not be chosen at random.  
 
Ω - statistical properties:  
estimability, testability,  
balance (variance balance, efficiency balance),  
optimality, 
 
etc…….. 
 



The basic problem worked out here, is the way of assigning plan Ω to a given 
experimental material. This is defined by the scheme of randomization. It 
describes how to assign the theoretical units of plan Ω (with their treatments), 
to the experimental plots. In our considerations the treatments will not be 
randomised.  
 
Suppose that the randomization is performed as described by Nelder (1954) by 
randomly permuting, for example for block design, blocks within their total 
area and by randomly permuting units within blocks.  
 
(see: Caliński & Kageyama, 2000, 2002) 
  

It will be assumed that the treatments under consideration are homogeneous 
(or additive) in the sense that the variation of the response among the available 
experimental units does not depend on the treatment received (cf. Kempthorne, 
1952, Nelder, 1965). 
 



 
 
 
Modelling (Fisher’s principles) 
 

 
Observed yield =  (block structure effects)   

+ (treatment effects)   
+ (unit errors)  

+ (technical errors) 
 

 

 

 



Block designed experiment 

 

 

Example 
 

B1 B2 B3 B4 B5 

 
 
 

B1 B4 B3 B2 B4 B3 

 

 



Case A.  

Population of experimental units (potential population of units): 

- b  blocks of sizes 1K ,  2K ,…, bK  , 

 

Plan Ω 

-   b  blocks of sizes  k1, k2,...,kb  units (ki   ≤ Ki,  i=1,2,…,b) 

 

 

 

 



Randomizations: 

-- blocks are not randomised. It means that because of some reasons the  
  blocks of the plan Ω are assigned to the experimental ones in an  

  arbitrary, non random way;  

 

-- units within each experimental block are assigned at random to the units of 

 plan  Ω; 

 

-- all the b randomizations are independent; 

 

 

 



Formal derivation: 

Let i
jtd  is equal to 1, if within the i-th block the t-th unit of experimental 

material is assigned to the j-th unit of plan Ω; otherwise i
jtd  is equal to 0. 

Distribution of i
jtd  (discrete). 

Conceptual response of the j-th unit of the i-th block after randomization: 

,it
i
jttij mdY Σ=  then using equality ),( .. iitiit mmmm −+=  → ,ijiijY ε+α=  j= 

1,2,…, ik , ,.ii m=µ  denotes the effect of the i-th block, 

)( .iit
i
jttij mmd −Σ=ε , denotes the random effect of the j-th unit in the i-th 

block, 2
.

12 )( iittii mmK −Σ=σ −  - denotes the unit variance. 

Dispersion structure is given below. 



This scheme of randomization and the additivity assumptions generate the 

following linear model for observed yield ity  obtained for the t-th treatment 

in the i-th block, (t=1,2,…v): 
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 The parameters in the model (1) are as follows: µ - the mean of 

experiment,  iα  - the effect of the i-th block, tτ - the effect of the t-th treatment, 

ite - a plot error, itε - a technical error, 2iσ - a plot variance of the i-th block, 2σ  - 

a technical error variance. 



Particular cases: 

 

1)  .,...,2,1, biKk ii ==  

 

2)  ∞→ijK , the observations can be considered uncorrelated.  

 

3) ∞→ijK , 22
ei σσ =  for all i,  

 

leads to often used fixed linear model for experiment carried out in  BD. These 

assumptions are restrictive and in a practice are seldom fulfilled.  

 



Example 
 

B1 B2 B3 B4 B5 

 
 
 

B1 B4 B3 B2 B4 B3 

 

 

 

 

 

 



Dispersion structure 

 

a b b b b       

b a b b b       

b b a b b       

b b b a b       

b b b b a       

     d c c c c c 
     c d c c c c 
     c c d c c c 
     c c c d c c 

     c c c c d c 
     c c c c c d 

 
 

 



Fixed ?                         
 
 
 

Observed yield =  (block structure effects)   
+ (treatment effects)   

+ (unit errors)  
+ (technical errors) 

 

Randomization? 

 

The assumptions are restrictive and in a practice are seldom fulfilled.  

 



Case B.  

Population of experimental units (potential population of units): 

- B  blocks of sizes K , 

Plan Ω :  

  b  blocks of sizes  k1, k2,...,kb  units (ki   ≤ K,  i=1,2,…,b) 

Structure of experimental units 
 
 
 

 1      B  
         

1   
1 

… K    1 … K 
 
 



Randomization: 

1) Randomization of blocks, 

2) Independent randomization of units within blocks. 

 

The linear model:  

  ,)( tityE τ+µ=           (2)   

),Cov( ''tiit yy = 
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,   where 2
Bσ  denotes the block 

variance within the i-th block, 2
eσ  denotes the plot variance within the i-th 

block. 



Particular cases: 

1) b=B, ki=k=K; 

2) ∞→B , ∞→K  

 

 

 

 

 

 

 

 

 



Example 
 

B1 B2 B3 B4 B5 

 
 
 

B1 B4 B3 B2 B4 B3 

 

 

 

 

 

 



 

Dispersion structure 

 

a b b b b d d d d d d 

b a b b b d d d d d d 

b b a b b d d d d d d 

b b b a b d d d d d d 

b b b b a d d d d d d 

d d d d d a b b b b b 

d d d d d b a b b b b 

d d d d d b b a b b b 

d d d d d b b b a b b 

d d d d d b b b b a b 
d d d d d b b b b b a 

 



 
Mixed ?                           
 
 

Observed yield =  (block structure effects)   
+ (treatment effects)   

+ (unit errors)  
+ (technical errors) 

 
 
Randomization? 
 

 



 

Random? 
 
 

Observed yield =  (block structure effects)   
+ (treatment effects)   

+ (unit errors)  
+ (technical errors) 

 
 
Randomization? 
 
 



Nested block design 

Structure of potential experimental units -  Case A 
 
 

 1      b1   
         

1 

   1 … K11    1 … K1b  
 

…………………… 
 
 

 1      bR   
         

R 

1 … KR1    1 … KRb  



Case A.  

Population of experimental units (potential population of units): 

-   R superblocks, 

- superblocks of sizes 1b ,  2b ,…, Rb   blocks, 

- ijK   -  number of units in the j-th block of the i-th superblock,   

- j = 1,2,...., bi,  i = 1,2 ...., R. 

Plan Ω 

-   R superblocks, 

- bi  blocks, 

-  kij   ( ≤ Kij ),  i=1,2,…,bi 



Randomization: 

1) Superblocks – not randomized, 

2)  Blocks – not randomized 

3) Units - independent randomization of units within blocks. 

 

Linear model for observed yield ijty  obtained for the t-th treatment in the j-th 

block of the i-th superblock: 

  ,ijtijttijiijt ey ε++τ+β+α+µ=   ,)( tijiijtyE τ+β+α+µ=          (3) 
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 The parameters in the model (3) are as follows:  

 

µ - the mean of experiment,   

iα  - the effect of the i-th superblock,  

ijβ - the effect of the j-th block of the i-th superblock,  

tτ - the effect of the t-th treatment,  

ijte - a plot error,  

ijtε - a technical error,  

2
ijσ - a plot variance of the j-th block in the i-th superblock,  

2σ  - a technical error variance. 

 



Particular cases: 

1)  ∞→ijK , the observations can be considered uncorrelated, 

 

2) 22
eij σ=σ  for all i, j, leads to often used fixed linear model for experiment 

carried out in  NBD.  

 

These assumptions are restrictive and in a practice are seldom fulfilled.  

 

 

 

 



Example: 

 

B1 B2 B3 B1 B4 

 
 
 

B1 B4 B3 B2 B4 B3 

 

 

 

 

 



Dispersion structure 

 

 
 

a b b         
b a b         
b b a         
   c d       
   d c       
     e f f    
     f e f    
     f f e    
        g h h 

        h g h 

        h h g 



Case B.  

Population of experimental units (potential population of units): 

-  R superblocks, 

- superblocks of sizes 1B ,  2B ,…, RB   blocks, 

- iK   -  number of units in the j-th block of the i-th superblock,   

- j = 1,2,...., Ki,  i = 1,2 ...., R. 

Plan Ω 

-   R superblocks, 

- bi     ( ≤ Bi ),  blocks, 

-  ki   ( ≤ Ki ),  i=1,2,…,R 



Structure of potential experimental units 
 
 
 

 1      B1  
iBB 

  
         

1 

1   
1 

… K1    1 … K1  
 
 

…………………… 
 
 

 1      BR 
b  B 

  
         

R 

1 … KR    1 … KR  
 



Randomization: 

1) Superblocks – not randomized, 

2)  Blocks – randomized 

3) Units - independent randomization of units within blocks. 

 

 

 

 

 

 

 

 



The linear model  

  

   ,)( tiijtyE τ+α+µ=           (4) 
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- 2
Biσ  denotes the block variance within the i-th superblock,  

- 2
oiσ  denotes the plot variance within the i-th superblock, i =1,2,..... , R.  

 

 
 



Example 
 

B1 B2 B3 B1 B4 

 
 
 

B1 B4 B3 B2 B4 B3 

 

 

 

 

 

 



Dispersion structure 

 
 

a b b c c       
b a b c c       
b b a c c       
c c c a b       
c c c b a       
     d e e f f f 

     e d e f f f 

     e e d f f f 

     f f f d e e 

     f f f e d e 
     f f f e e d 

 
 

 



Particular cases: 

1) Bi → ∞, Ki → ∞, the observations can be considered uncorrelated, 

 

 

2) 2
Biσ = 2

Bσ  and 2
oiσ = 2

oσ . for all i, leads to often used mixed linear model for 

experiment carried out in  NBD.  

 

It is worth noting here that the assumptions about the equality of the variances 

are extremely restrictive. This is the main disadvantage of this model. 

 

 



Case C.  

Population of experimental units (potential population of units): 

-  R superblocks, 

- superblocks of sizes B ,    blocks, 

- K   -  number of units in the j-th block of the i-th superblock,   

Plan Ω 

-   r   superblocks, 

- bi     ( ≤ B ),  blocks, 

- ki1, ki2 ,..., iibk (≤ K) 

 



Structure of experimental units 
 
 
 

 1      B   
         

1 

1   
1 

… K    1 … K  
 
 

…………………… 
 
 

 1      B   
         

R 

1 … K    1 … K  
 



 

Randomization 

 

Now, threefold randomization is performed i.e.  

1) the randomization of the superblocks,  

2) randomization of the blocks within the superblocks, 

3) and randomization of the units (plots) within the blocks. 

 

 

 

 

 

 



 

The obtained model has a form: 

   ,)( tijtyE τ+µ=            (5) 

),Cov( ''' tjiijt yy = 
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- 2
aσ  denotes the superblock variance, 

-  2
bσ  denotes the block variance, 

 - 2
eσ  denotes the unit variance.  

 



Example 
 

B1 B2 B3 B1 B4 

 
 
333 

B1 B4 B3 B2 B4 B3 

 

 

 

 

 

 



Dispersion structure 

 
 

a b b c c d d d d d d 
b a b c c d d d d d d 
b b a c c d d d d d d 
c c c a b d d d d d d 
c c c b a d d d d d d 
d d d d d a b b c c c 
d d d d d b a b c c c 
d d d d d b b a c c c 
d d d d d c c c a b b 
d d d d d c c c b a b 
d d d d d c c c b b a 

 
 
 



Particular cases: 

 

1) R → ∞, B → ∞ and K → ∞.  

We obtain the classic linear mixed model of the NBDs under this 

assumptions  

 

2) r=R, bi =B, ki1=ki2=...=
iibk =k, 

Usually the whole population of units takes part in an experiment.  

 

This  makes the model useful to practice. 

 



 

1)   R → ∞, B → ∞ and K → ∞.  

 

),Cov( ''' tjiijt yy = 






≠
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,',0

,,',

,',',',

,',',',

2

22

2222

ii

jjii

ttjjii

ttjjii

a

ba

eba

σ

σσ

σσσσ

 

 
 
 
 
 
 
 
 
 
 
 



 

Dispersion structure 
 

a b b c c       
b a b c c       
b b a c c       
c c c a b       
c c c b a       
     a b b c c c 
     b a b c c c 
     b b a c c c 
     c c c a b b 
     c c c b a b 
     c c c b b a 

 

 



 

Row – column design 

 

 1 2 ... q 

1     

2     

.     

p     

 

 

 

 



Randomization: 

1) the randomization of the rows (columns), 

4) randomization of the columns (rows), 

The obtained model has a form: 

   ,)( tijtyE τµ +=           (6) 
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Let p=2, q=5, 

Dispersion structure 

a b b b b e d d d d 
b a b b b d e d d d 
b b a b b d d e d d 
b b b a b d d d e d 
b b b b a d d d d e 
e d d d d a b b b b 
d e d d d b a b b b 
d d e d d b b a b b 
d d d e d b b b a b 
d d d d e b b b b a 

 
 

 



Analysis 

1) Randomization model 

2) Multistratum experiments (OBS, Genaral balance) 

3) Approximation by normal distribution 

(normal model) 
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