
Introduction to online learning
Learning without stochastic assumptions

Wojciech Kot lowski

Institute of Computing Science
Poznań University of Technology

Polish Statistical Association Meeting
UAM, 14.03.2018

1 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

2 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

3 / 51

A typical scheme in machine learning

learning
algorithm

decision
function
(action)
â : X → Y

predictions
ŷ5 = â(x5)
ŷ6 = â(x6)
ŷ7 = â(x7)

accuracy
`(y5, ŷ5)
`(y5, ŷ6)
`(y7, ŷ7)

training sample S test sample feedback
y5, y6, y7

(x1, y1) (x2, y2)

(x3, y3)
(x4, y4)

(x5, ?)(x6, ?)

(x7, ?)

Goal

Given training sample S, learn a decision function â so that average loss
on a separate test sample is minimized.

No reasonable solution without assumptions!

4 / 51

A typical scheme in machine learning

learning
algorithm

decision
function
(action)
â : X → Y

predictions
ŷ5 = â(x5)
ŷ6 = â(x6)
ŷ7 = â(x7)

accuracy
`(y5, ŷ5)
`(y5, ŷ6)
`(y7, ŷ7)

training sample S test sample feedback
y5, y6, y7

(x1, y1) (x2, y2)

(x3, y3)
(x4, y4)

(x5, ?)(x6, ?)

(x7, ?)

Goal

Given training sample S, learn a decision function â so that average loss
on a separate test sample is minimized.

No reasonable solution without assumptions!

4 / 51

A typical scheme in machine learning

learning
algorithm

decision
function
(action)
â : X → Y

predictions
ŷ5 = â(x5)
ŷ6 = â(x6)
ŷ7 = â(x7)

accuracy
`(y5, ŷ5)
`(y5, ŷ6)
`(y7, ŷ7)

training sample S test sample feedback
y5, y6, y7

(x1, y1) (x2, y2)

(x3, y3)
(x4, y4)

(x5, ?)(x6, ?)

(x7, ?)

Goal

Given training sample S, learn a decision function â so that average loss
on a separate test sample is minimized.

No reasonable solution without assumptions!

4 / 51

Statistical learning theory

Assumption

Training and test data generated i.i.d. from (unknown) distribution P

Mean training error of a (empirical risk):

LS(a) =
1

n

n∑
i=1

`(yi, a(xi))

Test error = expected error of a (risk):

L(a) = E(x,y)∼P [`(y, a(x))] .

Given training data S, how to construct â to make L(â) small?

=⇒ Empirical risk minimization.

5 / 51

Statistical learning theory

Assumption

Training and test data generated i.i.d. from (unknown) distribution P

Mean training error of a (empirical risk):

LS(a) =
1

n

n∑
i=1

`(yi, a(xi))

Test error = expected error of a (risk):

L(a) = E(x,y)∼P [`(y, a(x))] .

Given training data S, how to construct â to make L(â) small?
=⇒ Empirical risk minimization.

5 / 51

Generalization bounds

Theorem for finite classes (0/1 loss)

Let the class of decision functions A be finite. If function â was selected
from A by minimizing the empirical risk on sample S of size n:

â = arg min
a∈A

LS(a),

then with high probability and on expectation (over S)

L(â)−min
a∈A

L(a)︸ ︷︷ ︸
excess risk

= O

(√
log |A|
n

)

6 / 51

Generalization bounds

Theorem for VC classes (0/1 loss)

Let A has VC dimension dVC. If function â was selected from A by
minimizing the empirical risk on sample S of size n:

â = arg min
a∈A

LS(a),

then with high probability and on expectation (over S)

L(â)−min
a∈A

L(a) = O

(√
dVC

n

)

7 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

8 / 51

Alternative view on learning

Stochastic (i.i.d.) assumption sometimes unjustified, sometimes
clearly invalid (e.g., time series)

Learning process by its very nature is incremental.

We do not observe the distributions, we only see the data.

Motivation

Can we remove any probabilistic assumptions and treat the data
generating process as completely arbitrary?

Statistics without probabilities???

Can we obtain performance guarantees solely based on observed
quantities?

we can! =⇒ online learning theory

9 / 51

Alternative view on learning

Stochastic (i.i.d.) assumption sometimes unjustified, sometimes
clearly invalid (e.g., time series)

Learning process by its very nature is incremental.

We do not observe the distributions, we only see the data.

Motivation

Can we remove any probabilistic assumptions and treat the data
generating process as completely arbitrary?

Statistics without probabilities???

Can we obtain performance guarantees solely based on observed
quantities?

we can! =⇒ online learning theory

9 / 51

Alternative view on learning

Stochastic (i.i.d.) assumption sometimes unjustified, sometimes
clearly invalid (e.g., time series)

Learning process by its very nature is incremental.

We do not observe the distributions, we only see the data.

Motivation

Can we remove any probabilistic assumptions and treat the data
generating process as completely arbitrary?

Statistics without probabilities???

Can we obtain performance guarantees solely based on observed
quantities?

we can! =⇒ online learning theory

9 / 51

Online learning theory

Also known as universal prediction or sequential prediction

We do not make any probabilistic assumptions on the data (the data
can even be adversarial)

We consider a sequential setting in which the learning algorithm
makes repeated predictions (in rounds) on the data sequence

As without assumptions on the data, it is clearly impossible to
perform well in an absolute sense, we compare our performance to the
best predictions that could have been made by some decision function
(action) in a restricted class of actions (e.g., linear functions)

As it is impossible to bound the prediction error at a given round, we
focus on cumulative errors over the whole sequence

10 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50%

25% 10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50%

25% 10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25%

10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25%

10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10%

25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10%

25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10% 25%

. . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10% 25%

. . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

t = 1 t = 2 t = 3 t = 4 . . .

50% 25% 10% 25% . . .

. . .

11 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50% 10% . . .

10% 80% 50% 10% . . .

20% 70% 50% 30% . . .

60% 30% 50% 80% . . .

30% 65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30%

50% 50% 10% . . .

10%

80% 50% 10% . . .

20%

70% 50% 30% . . .

60%

30% 50% 80% . . .

30% 65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30%

50% 50% 10% . . .

10%

80% 50% 10% . . .

20%

70% 50% 30% . . .

60%

30% 50% 80% . . .

30%

65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30%

50% 50% 10% . . .

10%

80% 50% 10% . . .

20%

70% 50% 30% . . .

60%

30% 50% 80% . . .

30%

65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50%

50% 10% . . .

10% 80%

50% 10% . . .

20% 70%

50% 30% . . .

60% 30%

50% 80% . . .

30%

65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50%

50% 10% . . .

10% 80%

50% 10% . . .

20% 70%

50% 30% . . .

60% 30%

50% 80% . . .

30% 65%

50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50%

50% 10% . . .

10% 80%

50% 10% . . .

20% 70%

50% 30% . . .

60% 30%

50% 80% . . .

30% 65%

50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50%

10% . . .

10% 80% 50%

10% . . .

20% 70% 50%

30% . . .

60% 30% 50%

80% . . .

30% 65%

50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50%

10% . . .

10% 80% 50%

10% . . .

20% 70% 50%

30% . . .

60% 30% 50%

80% . . .

30% 65% 50%

10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50%

10% . . .

10% 80% 50%

10% . . .

20% 70% 50%

30% . . .

60% 30% 50%

80% . . .

30% 65% 50%

10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50% 10%

. . .

10% 80% 50% 10%

. . .

20% 70% 50% 30%

. . .

60% 30% 50% 80%

. . .

30% 65% 50%

10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50% 10%

. . .

10% 80% 50% 10%

. . .

20% 70% 50% 30%

. . .

60% 30% 50% 80%

. . .

30% 65% 50% 10%

. . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50% 10%

. . .

10% 80% 50% 10%

. . .

20% 70% 50% 30%

. . .

60% 30% 50% 80%

. . .

30% 65% 50% 10%

. . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

expert t = 1 t = 2 t = 3 t = 4 . . .

30% 50% 50% 10% . . .

10% 80% 50% 10% . . .

20% 70% 50% 30% . . .

60% 30% 50% 80% . . .

30% 65% 50% 10% . . .

. . .

12 / 51

Example: weather prediction (rain/sunny)

Prediction accuracy evaluated by a loss function, e.g.:
`(yt, ŷt) = |yt − ŷt|.
Total performance evaluated by a regret: algorithms’s cumulative loss
minus cumulative loss of the best expert in hindsight.

expert 1 2 3 4 cumulative loss

30% 50% 50% 10%

0.3 + 0.5 + 0.5 + 0.1 = 1.4

10% 80% 50% 10%

0.1 + 0.2 + 0.5 + 0.1 = 0.9

20% 70% 50% 30%

0.2 + 0.3 + 0.5 + 0.3 = 1.3

60% 30% 50% 80%

0.6 + 0.7 + 0.5 + 0.8 = 2.6

30% 65% 50% 10%

0.3 + 0.45 + 0.5 + 0.1 = 1.35

Regret of the algorithm: 1.35− 0.9 = 0.45.

The goal is to have small regret for any data sequence.

13 / 51

Example: weather prediction (rain/sunny)

Prediction accuracy evaluated by a loss function, e.g.:
`(yt, ŷt) = |yt − ŷt|.
Total performance evaluated by a regret: algorithms’s cumulative loss
minus cumulative loss of the best expert in hindsight.

expert 1 2 3 4 cumulative loss

30% 50% 50% 10%

0.3 + 0.5 + 0.5 + 0.1 = 1.4

10% 80% 50% 10%

0.1 + 0.2 + 0.5 + 0.1 = 0.9

20% 70% 50% 30%

0.2 + 0.3 + 0.5 + 0.3 = 1.3

60% 30% 50% 80%

0.6 + 0.7 + 0.5 + 0.8 = 2.6

30% 65% 50% 10%

0.3 + 0.45 + 0.5 + 0.1 = 1.35

Regret of the algorithm: 1.35− 0.9 = 0.45.

The goal is to have small regret for any data sequence.

13 / 51

Example: weather prediction (rain/sunny)

Prediction accuracy evaluated by a loss function, e.g.:
`(yt, ŷt) = |yt − ŷt|.
Total performance evaluated by a regret: algorithms’s cumulative loss
minus cumulative loss of the best expert in hindsight.

expert 1 2 3 4 cumulative loss

30% 50% 50% 10% 0.3 + 0.5 + 0.5 + 0.1 = 1.4

10% 80% 50% 10% 0.1 + 0.2 + 0.5 + 0.1 = 0.9

20% 70% 50% 30% 0.2 + 0.3 + 0.5 + 0.3 = 1.3

60% 30% 50% 80% 0.6 + 0.7 + 0.5 + 0.8 = 2.6

30% 65% 50% 10% 0.3 + 0.45 + 0.5 + 0.1 = 1.35

Regret of the algorithm: 1.35− 0.9 = 0.45.

The goal is to have small regret for any data sequence.

13 / 51

Example: weather prediction (rain/sunny)

Prediction accuracy evaluated by a loss function, e.g.:
`(yt, ŷt) = |yt − ŷt|.
Total performance evaluated by a regret: algorithms’s cumulative loss
minus cumulative loss of the best expert in hindsight.

expert 1 2 3 4 cumulative loss

30% 50% 50% 10% 0.3 + 0.5 + 0.5 + 0.1 = 1.4

10% 80% 50% 10% 0.1 + 0.2 + 0.5 + 0.1 = 0.9

20% 70% 50% 30% 0.2 + 0.3 + 0.5 + 0.3 = 1.3

60% 30% 50% 80% 0.6 + 0.7 + 0.5 + 0.8 = 2.6

30% 65% 50% 10% 0.3 + 0.45 + 0.5 + 0.1 = 1.35

Regret of the algorithm: 1.35− 0.9 = 0.45.

The goal is to have small regret for any data sequence.
13 / 51

Online learning framework

learning algorithm
(action ât)

prediction
ŷt = ât(xt)

suffered loss
`(yt, ŷt)

new input
(xt, ?) feedback:

yt

t → t+ 1

14 / 51

Online learning framework

Comparator class of actions (decision functions)

The algorithm’s performance is compared against a class of actions A.
The goal is to predict (almost) as good as the best action in A

Cumulative loss of the algorithm:

L̂n =
n∑
t=1

`(yt, ŷt)

Cumulative loss of the best action a ∈ A in hindsight:

L∗n = min
a∈A

n∑
t=1

`(yt, a(xt))

Regret of the algorithm:
Rn = L̂n − L∗n.

Quantifies suboptimality: how much less loss could we have incurred had
we played with the optimal action from the beginning?

The goal is to have small (sublinear) regret on all possible data sequences.

15 / 51

Online learning framework

Comparator class of actions (decision functions)

The algorithm’s performance is compared against a class of actions A.
The goal is to predict (almost) as good as the best action in A

Cumulative loss of the algorithm:

L̂n =

n∑
t=1

`(yt, ŷt)

Cumulative loss of the best action a ∈ A in hindsight:

L∗n = min
a∈A

n∑
t=1

`(yt, a(xt))

Regret of the algorithm:
Rn = L̂n − L∗n.

Quantifies suboptimality: how much less loss could we have incurred had
we played with the optimal action from the beginning?

The goal is to have small (sublinear) regret on all possible data sequences.

15 / 51

Online learning framework

Comparator class of actions (decision functions)

The algorithm’s performance is compared against a class of actions A.
The goal is to predict (almost) as good as the best action in A

Cumulative loss of the algorithm:

L̂n =

n∑
t=1

`(yt, ŷt)

Cumulative loss of the best action a ∈ A in hindsight:

L∗n = min
a∈A

n∑
t=1

`(yt, a(xt))

Regret of the algorithm:
Rn = L̂n − L∗n.

Quantifies suboptimality: how much less loss could we have incurred had
we played with the optimal action from the beginning?

The goal is to have small (sublinear) regret on all possible data sequences.
15 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

16 / 51

Prediction with expert advice

N actions (“experts”) to follow: A = {a1, . . . , aN}
Input xt = (xt,1, . . . , xt,N): vector of experts’ predictions

Prediction of k-th expert (action) at round i: ak(xt) = xt,k

Algorithm’s action ât: weight vector ât = (ât,1, . . . , ât,N) ∈ ∆N ,

where ∆N = {p :
∑N

k=1 pk = 1, pk ≥ 0}
(current weights assigned to each expert by the algorithm)

Algorithm’s prediction: weighted average of experts’ predictions

ŷt = ât(xt) =
N∑
k=1

ât,kxt,k = â>t xt

17 / 51

Prediction with expert advice

Algorithm start with some initial weight vector (action) â1 ∈ ∆N

(e.g. uniform distribution â1 = (1
N , . . . ,

1
N))

For t = 1, 2, . . .:

1 Experts reveals their predictions: xt = (xt,1, . . . , xt,N)

2 Algorithm predicts with ŷt = â>t xt.

3 The environment reveals outcome yt.

4 Algorithm suffers loss ˆ̀
t = `(yt, ŷt)

and each expert k suffers loss `t(k) = `(yt, xt,k), k = 1, . . . , N

5 Algorithm updates its vector ât → ât+1.

Goal: minimize regret with respect to the best expert

Rn = L̂n − min
k=1,...,N

Ln(k), where L̂n =

n∑
t=1

ˆ̀
t, Ln(k) =

n∑
t=1

`t(k)

18 / 51

Prediction with expert advice

Algorithm start with some initial weight vector (action) â1 ∈ ∆N

(e.g. uniform distribution â1 = (1
N , . . . ,

1
N))

For t = 1, 2, . . .:

1 Experts reveals their predictions: xt = (xt,1, . . . , xt,N)

2 Algorithm predicts with ŷt = â>t xt.

3 The environment reveals outcome yt.

4 Algorithm suffers loss ˆ̀
t = `(yt, ŷt)

and each expert k suffers loss `t(k) = `(yt, xt,k), k = 1, . . . , N

5 Algorithm updates its vector ât → ât+1.

Goal: minimize regret with respect to the best expert

Rn = L̂n − min
k=1,...,N

Ln(k), where L̂n =

n∑
t=1

ˆ̀
t, Ln(k) =

n∑
t=1

`t(k)

18 / 51

First attempt: Follow the Leader strategy

Follow the Leader (FTL)

At iteration t, follow the expert with the smallest loss so far

kmin = argmin
k=1,...,N

Lt−1(k).

Choose ât such that:

ât,k =

{
1 if k = kmin

0 otherwise

In other words, ŷt = xt,kmin

19 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

25% 0% 0% 0% 0% 0% 0%

0

50% 0% 100% 0% 100% 0% 100%

0

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75%

100% 100% 100% 100% 100% 100%

0

25%

0% 0% 0% 0% 0% 0%

0

50% 0% 100% 0% 100% 0% 100%

0

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75%

100% 100% 100% 100% 100% 100%

0

25%

0% 0% 0% 0% 0% 0%

0

50%

0% 100% 0% 100% 0% 100%

0

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75%

100% 100% 100% 100% 100% 100% 0

0.75

25%

0% 0% 0% 0% 0% 0% 0

0.25

50%

0% 100% 0% 100% 0% 100% 0

0.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100%

100% 100% 100% 100% 100% 0

0.75

25% 0%

0% 0% 0% 0% 0% 0

0.25

50%

0% 100% 0% 100% 0% 100% 0

0.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100%

100% 100% 100% 100% 100% 0

0.75

25% 0%

0% 0% 0% 0% 0% 0

0.25

50% 0%

100% 0% 100% 0% 100% 0

0.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100%

100% 100% 100% 100% 100% 0

0.75

25% 0%

0% 0% 0% 0% 0% 0

1.25

50% 0%

100% 0% 100% 0% 100% 0

1.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100%

100% 100% 100% 100% 0

0.75

25% 0% 0%

0% 0% 0% 0% 0

1.25

50% 0%

100% 0% 100% 0% 100% 0

1.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100%

100% 100% 100% 100% 0

0.75

25% 0% 0%

0% 0% 0% 0% 0

1.25

50% 0% 100%

0% 100% 0% 100% 0

1.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100%

100% 100% 100% 100% 0

1.75

25% 0% 0%

0% 0% 0% 0% 0

1.25

50% 0% 100%

0% 100% 0% 100% 0

2.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100%

100% 100% 100% 0

1.75

25% 0% 0% 0%

0% 0% 0% 0

1.25

50% 0% 100%

0% 100% 0% 100% 0

2.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100%

100% 100% 100% 0

1.75

25% 0% 0% 0%

0% 0% 0% 0

1.25

50% 0% 100% 0%

100% 0% 100% 0

2.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100%

100% 100% 100% 0

1.75

25% 0% 0% 0%

0% 0% 0% 0

2.25

50% 0% 100% 0%

100% 0% 100% 0

3.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100%

100% 100% 0

1.75

25% 0% 0% 0% 0%

0% 0% 0

2.25

50% 0% 100% 0%

100% 0% 100% 0

3.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100%

100% 100% 0

1.75

25% 0% 0% 0% 0%

0% 0% 0

2.25

50% 0% 100% 0% 100%

0% 100% 0

3.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100%

100% 100% 0

2.75

25% 0% 0% 0% 0%

0% 0% 0

2.25

50% 0% 100% 0% 100%

0% 100% 0

4.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100%

100% 0

2.75

25% 0% 0% 0% 0% 0%

0% 0

2.25

50% 0% 100% 0% 100%

0% 100% 0

4.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100%

100% 0

2.75

25% 0% 0% 0% 0% 0%

0% 0

2.25

50% 0% 100% 0% 100% 0%

100% 0

4.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100%

100% 0

2.75

25% 0% 0% 0% 0% 0%

0% 0

3.25

50% 0% 100% 0% 100% 0%

100% 0

5.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

2.75

25% 0% 0% 0% 0% 0% 0%

0

3.25

50% 0% 100% 0% 100% 0%

100% 0

5.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

2.75

25% 0% 0% 0% 0% 0% 0%

0

3.25

50% 0% 100% 0% 100% 0% 100%

0

5.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

3.75

25% 0% 0% 0% 0% 0% 0%

0

3.25

50% 0% 100% 0% 100% 0% 100%

0

6.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

3.75

25% 0% 0% 0% 0% 0% 0%

0

3.25

50% 0% 100% 0% 100% 0% 100%

0

6.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Failure of FTL

expert 1 2 3 4 5 6 7 loss

75% 100% 100% 100% 100% 100% 100%

0

3.75

25% 0% 0% 0% 0% 0% 0%

0

3.25

50% 0% 100% 0% 100% 0% 100%

0

6.5

L̂n ' n, min
k
Ln(k) ' n

2
, Rn '

n

2
(regret linear in n)

Algorithm must hedge its bets on experts!

20 / 51

Exponential weights [Littlestone & Warmuth, 1994]

Algorithm

Each time expert k receives a loss `(k), multiply the weight âk associated
with that expert by e−η`(k), where η > 0.

ât+1,k =
ât,ke

−η`t(k)

Zt
, where Zt =

N∑
k=1

ât,ke
−η`t(k)

Unwinding this update:

ât+1,k =
e−ηLt(k)

Zt
, where Zt =

N∑
k=1

e−ηLt(k)

21 / 51

Exponential weights [Littlestone & Warmuth, 1994]

Algorithm

Each time expert k receives a loss `(k), multiply the weight âk associated
with that expert by e−η`(k), where η > 0.

ât+1,k =
ât,ke

−η`t(k)

Zt
, where Zt =

N∑
k=1

ât,ke
−η`t(k)

Unwinding this update:

ât+1,k =
e−ηLt(k)

Zt
, where Zt =

N∑
k=1

e−ηLt(k)

21 / 51

Exponential weights [Littlestone & Warmuth, 1994]

Algorithm

Each time expert k receives a loss `(k), multiply the weight âk associated
with that expert by e−η`(k), where η > 0.

ât+1,k =
ât,ke

−η`t(k)

Zt
, where Zt =

N∑
k=1

ât,ke
−η`t(k)

Unwinding this update:

ât+1,k =
e−ηLt(k)

Zt
, where Zt =

N∑
k=1

e−ηLt(k)

21 / 51

Exponential Weights as Bayesian update

Prior probability over N alternatives E1, . . . , EN .

Data likelihoods: P (Dt|Ek), k = 1, . . . , N .

P (Ek|Dt) =
P (Dt|Ek) × P (Ek)∑N
j=1 P (Dt|Ej)× P (Ej)

posterior probability ât+1,k data likelihood e−η`t(k)

prior probability ât,k

P (Ek|Dt) =
P (Dt|Ek) × P (Ek)∑N
j=1 P (Dt|Ej)× P (Ej)

normalization Zt

22 / 51

Exponential Weights as Bayesian update

Prior probability over N alternatives E1, . . . , EN .

Data likelihoods: P (Dt|Ek), k = 1, . . . , N .

posterior probability ât+1,k data likelihood e−η`t(k)

prior probability ât,k

P (Ek|Dt) =
P (Dt|Ek) × P (Ek)∑N
j=1 P (Dt|Ej)× P (Ej)

normalization Zt

22 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.3

0.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.3

0.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%

50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%

50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.3

0.5 0.2 0.3 0.7 0.36

0.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%

50% 80% 70% 30% 64%

50% 50% 50% 50% 50%10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.3

0.5 0.2 0.3 0.7 0.36

0.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%

50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%

50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.36

0.5 0.5 0.5 0.5 0.5

0.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%

50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.36

0.5 0.5 0.5 0.5 0.5

0.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.50.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.5

0.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential Weights example (η = 2)

30% 10% 20% 60% 30%50% 80% 70% 30% 64%50% 50% 50% 50% 50%

10% 10% 30% 80% 21%

0.3 0.1 0.2 0.6 0.30.5 0.2 0.3 0.7 0.360.5 0.5 0.5 0.5 0.5

0.1 0.1 0.3 0.8 0.21

0

0.25

0.5

0.75

1

23 / 51

Exponential weights analysis: convex losses

Let `(y, ŷ) be bounded (e.g. in [0, 1]) and convex with respect to ŷ

Regret bound

For any data sequence, when η =
√

8 logN
n ,

Rn ≤
√
n logN

2

Sublinear regret: regret per trial Rn
n converges to 0 as 1√

n

Regret bound

For any data sequence, let L∗n = mink Ln(k). When η =
√

2 lnN
L∗n

,

Rn ≤
√

2L∗n lnN + lnN

Both bounds are tight.

24 / 51

Exponential weights analysis: convex losses

Let `(y, ŷ) be bounded (e.g. in [0, 1]) and convex with respect to ŷ

Regret bound

For any data sequence, when η =
√

8 logN
n ,

Rn ≤
√
n logN

2

Sublinear regret: regret per trial Rn
n converges to 0 as 1√

n

Regret bound

For any data sequence, let L∗n = mink Ln(k). When η =
√

2 lnN
L∗n

,

Rn ≤
√

2L∗n lnN + lnN

Both bounds are tight.

24 / 51

Exponential weights analysis: convex losses

Let `(y, ŷ) be bounded (e.g. in [0, 1]) and convex with respect to ŷ

Regret bound

For any data sequence, when η =
√

8 logN
n ,

Rn ≤
√
n logN

2

Sublinear regret: regret per trial Rn
n converges to 0 as 1√

n

Regret bound

For any data sequence, let L∗n = mink Ln(k). When η =
√

2 lnN
L∗n

,

Rn ≤
√

2L∗n lnN + lnN

Both bounds are tight.
24 / 51

Exp-concave losses

Exp-concave function

Function f(x) is α-exp-concave, if e−αf(x) is concave

Loss `(y, ŷ) is α-exp-concave if for any y, f(ŷ) = `(y, ŷ) is α-exp-concave

Exp-concavity implies convexity, but not vice versa

Squared loss
`(y, ŷ) = (y − ŷ)2

is 1
2 -exp-concave for y, ŷ ∈ [0, 1]

Cross-entropy loss

`(y, ŷ) = −y ln ŷ − (1− y) ln(1− ŷ)

for y, ŷ ∈ [0, 1] is 1-exp-concave

Absolute loss
`(y, ŷ) = |y − ŷ|

is not exp-concave for any α

25 / 51

Exp-concave losses

Exp-concave function

Function f(x) is α-exp-concave, if e−αf(x) is concave

Loss `(y, ŷ) is α-exp-concave if for any y, f(ŷ) = `(y, ŷ) is α-exp-concave

Exp-concavity implies convexity, but not vice versa

Squared loss
`(y, ŷ) = (y − ŷ)2

is 1
2 -exp-concave for y, ŷ ∈ [0, 1]

Cross-entropy loss

`(y, ŷ) = −y ln ŷ − (1− y) ln(1− ŷ)

for y, ŷ ∈ [0, 1] is 1-exp-concave

Absolute loss
`(y, ŷ) = |y − ŷ|

is not exp-concave for any α

25 / 51

Exp-concave losses

Exp-concave function

Function f(x) is α-exp-concave, if e−αf(x) is concave

Loss `(y, ŷ) is α-exp-concave if for any y, f(ŷ) = `(y, ŷ) is α-exp-concave

Exp-concavity implies convexity, but not vice versa

Squared loss
`(y, ŷ) = (y − ŷ)2

is 1
2 -exp-concave for y, ŷ ∈ [0, 1]

Cross-entropy loss

`(y, ŷ) = −y ln ŷ − (1− y) ln(1− ŷ)

for y, ŷ ∈ [0, 1] is 1-exp-concave

Absolute loss
`(y, ŷ) = |y − ŷ|

is not exp-concave for any α

25 / 51

Exp-concave losses

Exp-concave function

Function f(x) is α-exp-concave, if e−αf(x) is concave

Loss `(y, ŷ) is α-exp-concave if for any y, f(ŷ) = `(y, ŷ) is α-exp-concave

Exp-concavity implies convexity, but not vice versa

Squared loss
`(y, ŷ) = (y − ŷ)2

is 1
2 -exp-concave for y, ŷ ∈ [0, 1]

Cross-entropy loss

`(y, ŷ) = −y ln ŷ − (1− y) ln(1− ŷ)

for y, ŷ ∈ [0, 1] is 1-exp-concave

Absolute loss
`(y, ŷ) = |y − ŷ|

is not exp-concave for any α

25 / 51

Exponential weights analysis: exp-concave losses

Let loss function `(y, ŷ) be α-exp-concave

Regret bound

For any data sequence, when η = α,

Rn ≤
lnN

α

Constant regret: regret per trial Rn
n converges to 0 as 1

n

26 / 51

Exponential weights analysis: exp-concave losses

Let loss function `(y, ŷ) be α-exp-concave

Regret bound

For any data sequence, when η = α,

Rn ≤
lnN

α

Constant regret: regret per trial Rn
n converges to 0 as 1

n

26 / 51

General losses

Can we still achieve sublinear regret for non-convex loss `(y, ŷ)?

Yes, but the algorithm needs to randomize:

Update weights using Exponential Weights algorithm

At trial t, predict as expert k (i.e., ŷt = xt,k) with probability ât,k

Expected (with respect to internal randomization) loss of the algorithm:

E[ˆ̀t] =
n∑
i=1

ât,k `(yt, xt,k)

This loss is effectively linear (hence convex) as a function of ât

27 / 51

General losses

Can we still achieve sublinear regret for non-convex loss `(y, ŷ)?

Yes, but the algorithm needs to randomize:

Update weights using Exponential Weights algorithm

At trial t, predict as expert k (i.e., ŷt = xt,k) with probability ât,k

Expected (with respect to internal randomization) loss of the algorithm:

E[ˆ̀t] =
n∑
i=1

ât,k `(yt, xt,k)

This loss is effectively linear (hence convex) as a function of ât

27 / 51

General losses

Can we still achieve sublinear regret for non-convex loss `(y, ŷ)?

Yes, but the algorithm needs to randomize:

Update weights using Exponential Weights algorithm

At trial t, predict as expert k (i.e., ŷt = xt,k) with probability ât,k

Expected (with respect to internal randomization) loss of the algorithm:

E[ˆ̀t] =

n∑
i=1

ât,k `(yt, xt,k)

This loss is effectively linear (hence convex) as a function of ât

27 / 51

Exponential weights analysis: general losses

Let the loss function `(y, ŷ) be bounded (e.g. in [0, 1])

Regret bound

For any data sequence, when η =
√

8 logN
n , it holds on expectation and

with high probability (with respect to internal randomization of the
algorithm):

Rn ≤
√
n logN

2

The same bound as for convex losses

28 / 51

Statistical learning theory vs. online learning theory

Let A be a finite class of decision functions/actions

Statistical learning theory

Theorem

Function â trained by empirical
risk minimization achieves:

L(â)−min
a∈A

L(a)︸ ︷︷ ︸
excess risk

= O

(√
ln |A|
n

)

Online learning theory

Theorem

Exponential Weights algorithm
achieves:

1

n

(
L̂n −min

a∈A
Ln(a)︸ ︷︷ ︸

regret

)
= O

(√
ln |A|
n

)

Essentially the same performance (with excess risk replaced by regret per
trial) without i.i.d. assumption!

29 / 51

Statistical learning theory vs. online learning theory

Let A be a finite class of decision functions/actions

Statistical learning theory

Theorem

Function â trained by empirical
risk minimization achieves:

L(â)−min
a∈A

L(a)︸ ︷︷ ︸
excess risk

= O

(√
ln |A|
n

)

Online learning theory

Theorem

Exponential Weights algorithm
achieves:

1

n

(
L̂n −min

a∈A
Ln(a)︸ ︷︷ ︸

regret

)
= O

(√
ln |A|
n

)

Essentially the same performance (with excess risk replaced by regret per
trial) without i.i.d. assumption!

29 / 51

Online to batch conversion

Theorem

Let `(y, ŷ) be a convex loss function.

Let â1, â2, . . . , ân be a sequence of actions produced by an online learning
algorithm, which guarantees the regret to be bounded by Rn ≤ g(n) for
any data sequence.

Let ān = 1
n

∑n
t=1 ât. Then, the excess risk of ān is bounded by:

L(ān)−min
a∈A

L(a) ≤ g(n)

n

Similar conversion for non-convex losses (requires randomization)

30 / 51

Online to batch conversion

Theorem

Let `(y, ŷ) be a convex loss function.

Let â1, â2, . . . , ân be a sequence of actions produced by an online learning
algorithm, which guarantees the regret to be bounded by Rn ≤ g(n) for
any data sequence.

Let ān = 1
n

∑n
t=1 ât. Then, the excess risk of ān is bounded by:

L(ān)−min
a∈A

L(a) ≤ g(n)

n

Similar conversion for non-convex losses (requires randomization)

30 / 51

Finite action spaces: extensions

Large (or countably infinite) classes of actions.

Concept drift: competing with the best sequence of actions.

Competing with the best small set of recurring actions.

Ranking: competing with the best permutation.

Partial feedback: multi-armed bandits.

. . .

31 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

32 / 51

Online convex optimization

Let A ⊆ Rd be a convex set of actions

For t = 1, 2, . . .

1 Algorithm picks action ât ∈ A
2 The environment reveals convex loss `t : A → R
3 The algorithm suffers loss `t(ât)

(information about inputs xt and outputs yt hidden inside `t)

The goal is to minimize regret:

Rn =

n∑
t=1

`t(ât)−min
a∈A

n∑
t=1

`t(a)

33 / 51

Example: linear classification and regression

Action a ∈ A: parameter vector of a linear classifier/regression function:

a = (a1, . . . , ad) ∈ Rd

A can be Rd or can be a regularization ball A = {a : ‖a‖p ≤ B}.

For t = 1, 2, . . .:

1 Algorithm picks action ât ∈ A
2 The environment reveals feature vector xt
3 The algorithm predicts class label/real output ŷt = â>t xt
4 The environment reveals yt
5 The algorithm suffers loss `t(ât) = `(yt, ŷt) convex in ŷt (and thus

convex in ât)

Goal: minimize regret to the best linear function in A:

Rn =

n∑
t=1

`t(ât)−min
a∈A

n∑
t=1

`t(a) =

n∑
t=1

`(yt, ŷt)−min
a∈A

n∑
t=1

`(yt,a
>xt)

34 / 51

Examples

Linear regression: y ∈ R and

`(y, ŷ) = (y − ŷ)2.

Logistic regression: y ∈ {0, 1} and

`(y, ŷ) = ln
(

1 + e−yŷ
)
.

Support vector machines: y ∈ {0, 1} and

`(y, ŷ) = (1− yŷ)+

35 / 51

Examples

−2 −1 0 1 2

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

prediction

lo
ss

hinge (SVM)
square
logistic

Logistic and hinge losses plotted for y = 1.
Squared error loss plotted for y = 0.

36 / 51

Exponential Weights algorithm

Using Bayesian interpretation of Exponential Weights, we can extend it to
continuous spaces of actions:

Algorithm starts with a prior distribution P1 over A

For t = 1, 2, . . .:

1 Algorithm chooses action ât = Ea∼Pt [a]

2 Loss function `t : A → R is revealed and algorithm suffers loss `t(ât)

3 Algorithm updates its distribution:

Pt(a) =
1

Zt
e−η`t(a)Pt(a), where Zt =

∫
A
e−η`t(a) dPt(a)

Works very well and has good regret bounds, but computationally
inefficient in most cases

37 / 51

Gradient descent method

Minimize a function f(a) over a ∈ Rd.

Gradient descent method:

ât+1 = ât − ηt∇f(ât).

where ηt is a step size.

If we have a set of constraints a ∈ A, after each step we need to project
back to A:

ât+1 ← arg min
a∈A
‖ât+1 − a‖2.

Source: http://www-bcf.usc.edu/∼larry/, http://takisword.files.wordpress.com

38 / 51

Gradient descent method

Minimize a function f(a) over a ∈ Rd.

Gradient descent method:

ât+1 = ât − ηt∇f(ât).

where ηt is a step size.

If we have a set of constraints a ∈ A, after each step we need to project
back to A:

ât+1 ← arg min
a∈A
‖ât+1 − a‖2.

Source: http://www-bcf.usc.edu/∼larry/, http://takisword.files.wordpress.com

38 / 51

Online (stochastic) gradient descent

Algorithm

Start with any initial vector â1 ∈ A.

For t = 1, 2, . . .:

1 Algorithm picks an action ât

2 Loss function `t : A → R is revealed and algorithm suffers loss `t(ât)

3 Algorithm updates its action:

ât+1 = ât − ηt∇`t(ât).

4 If ât+1 /∈ A, project it back to A:

ât+1 ← min
a∈A
‖ât+1 − a‖2.

39 / 51

Online vs. standard gradient descent

The function we want to minimize:

f(a) =

n∑
t=1

`t(a).

Standard = batch GD

ât+1 : = ât − ηt∇f(ât)

= ât − ηt
n∑
j=1

∇`j(ât)

O(n) per iteration, need to see
all data.

Online GD

ât+1 := ât − ηt∇`t(ât).

O(1) per iteration, need to see
a single data point.

40 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4 −η1∇`1(â1)−η2∇`2(â2)

−η3`3(â3)projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4

−η1∇`1(â1)

−η2∇`2(â2)

−η3`3(â3)projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4

−η1∇`1(â1)

−η2∇`2(â2)

−η3`3(â3)projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4 −η1∇`1(â1)

−η2∇`2(â2)

−η3`3(â3)projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4 −η1∇`1(â1)

−η2∇`2(â2)

−η3`3(â3)projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4 −η1∇`1(â1)−η2∇`2(â2)

−η3`3(â3)

projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4 −η1∇`1(â1)−η2∇`2(â2)

−η3`3(â3)

projection

41 / 51

Online (stochastic) gradient descent

A

â1

â2

â3

â4

−η1∇`1(â1)−η2∇`2(â2)

−η3`3(â3)

projection

41 / 51

Calculating the gradient

The gradient ∇`t(a) can be obtained by applying a chain rule to
`t(a) = `(yt, ŷ) with ŷ = a>xt:

∇`t(a) =
∂`(yt, ŷ)

∂ŷ
∇(a>xt)

=
∂`(yt, ŷ)

∂ŷ
xt.

42 / 51

Update rules for specific losses

Linear regression:

`(y, ŷ) = (y − ŷ)2
∂`(y, ŷ)

∂ŷ
= −2(y − ŷ)

Update:
ât+1 = ât + 2ηt(yt − ŷt)xt.

Logistic regression:

`(y, ŷ) = ln
(
1 + e−yŷ

) ∂`(y, ŷ)

∂ŷ
= − y

1 + eyŷ

Update:
ât+1 = ât + ηt

ytxt
1 + eytŷt

.

Support vector machines:

`(y, ŷ) = (1− yŷ)+
∂`(y, ŷ)

∂ŷ
=

{
0 if yŷ > 1
−y if yŷ ≤ 1

Update:
ât+1 = ât + ηt1[ytŷt ≤ 1]ytxt

⇐ perceptron!

43 / 51

Update rules for specific losses

Linear regression:

`(y, ŷ) = (y − ŷ)2
∂`(y, ŷ)

∂ŷ
= −2(y − ŷ)

Update:
ât+1 = ât + 2ηt(yt − ŷt)xt.

Logistic regression:

`(y, ŷ) = ln
(
1 + e−yŷ

) ∂`(y, ŷ)

∂ŷ
= − y

1 + eyŷ

Update:
ât+1 = ât + ηt

ytxt
1 + eytŷt

.

Support vector machines:

`(y, ŷ) = (1− yŷ)+
∂`(y, ŷ)

∂ŷ
=

{
0 if yŷ > 1
−y if yŷ ≤ 1

Update:
ât+1 = ât + ηt1[ytŷt ≤ 1]ytxt

⇐ perceptron!

43 / 51

Update rules for specific losses

Linear regression:

`(y, ŷ) = (y − ŷ)2
∂`(y, ŷ)

∂ŷ
= −2(y − ŷ)

Update:
ât+1 = ât + 2ηt(yt − ŷt)xt.

Logistic regression:

`(y, ŷ) = ln
(
1 + e−yŷ

) ∂`(y, ŷ)

∂ŷ
= − y

1 + eyŷ

Update:
ât+1 = ât + ηt

ytxt
1 + eytŷt

.

Support vector machines:

`(y, ŷ) = (1− yŷ)+
∂`(y, ŷ)

∂ŷ
=

{
0 if yŷ > 1
−y if yŷ ≤ 1

Update:
ât+1 = ât + ηt1[ytŷt ≤ 1]ytxt

⇐ perceptron!

43 / 51

Update rules for specific losses

Linear regression:

`(y, ŷ) = (y − ŷ)2
∂`(y, ŷ)

∂ŷ
= −2(y − ŷ)

Update:
ât+1 = ât + 2ηt(yt − ŷt)xt.

Logistic regression:

`(y, ŷ) = ln
(
1 + e−yŷ

) ∂`(y, ŷ)

∂ŷ
= − y

1 + eyŷ

Update:
ât+1 = ât + ηt

ytxt
1 + eytŷt

.

Support vector machines:

`(y, ŷ) = (1− yŷ)+
∂`(y, ŷ)

∂ŷ
=

{
0 if yŷ > 1
−y if yŷ ≤ 1

Update:
ât+1 = ât + ηt1[ytŷt ≤ 1]ytxt ⇐ perceptron!

43 / 51

Projection

ât ← arg min
a∈A
‖ât − a‖2.

When A = Rd ⇒ no projection step.

When A = {a : ‖a‖ ≤ B} is an L2-ball, projection corresponds to
renormalization of the weight vector:

if ‖ât‖ > B =⇒ ât ←
Bât
‖ât‖

.

Equivalent to L2 regularization.

When A = {a :
∑d

k=1 |ak| ≤ B} is L1-ball, projection corresponds to
an additive shift of absolute values and clipping smaller weights to 0.

Equivalent to L1 regularization, results in sparse solutions.

44 / 51

Projection

ât ← arg min
a∈A
‖ât − a‖2.

When A = Rd ⇒ no projection step.

When A = {a : ‖a‖ ≤ B} is an L2-ball, projection corresponds to
renormalization of the weight vector:

if ‖ât‖ > B =⇒ ât ←
Bât
‖ât‖

.

Equivalent to L2 regularization.

When A = {a :
∑d

k=1 |ak| ≤ B} is L1-ball, projection corresponds to
an additive shift of absolute values and clipping smaller weights to 0.

Equivalent to L1 regularization, results in sparse solutions.

44 / 51

Projection

ât ← arg min
a∈A
‖ât − a‖2.

When A = Rd ⇒ no projection step.

When A = {a : ‖a‖ ≤ B} is an L2-ball, projection corresponds to
renormalization of the weight vector:

if ‖ât‖ > B =⇒ ât ←
Bât
‖ât‖

.

Equivalent to L2 regularization.

When A = {a :
∑d

k=1 |ak| ≤ B} is L1-ball, projection corresponds to
an additive shift of absolute values and clipping smaller weights to 0.

Equivalent to L1 regularization, results in sparse solutions.

44 / 51

Projection

ât ← arg min
a∈A
‖ât − a‖2.

When A = Rd ⇒ no projection step.

When A = {a : ‖a‖ ≤ B} is an L2-ball, projection corresponds to
renormalization of the weight vector:

if ‖ât‖ > B =⇒ ât ←
Bât
‖ât‖

.

Equivalent to L2 regularization.

When A = {a :
∑d

k=1 |ak| ≤ B} is L1-ball, projection corresponds to
an additive shift of absolute values and clipping smaller weights to 0.

Equivalent to L1 regularization, results in sparse solutions.

44 / 51

L1 vs. L2 projection

ât := arg min
a∈A
‖ât − a‖2.

ât ât

a2 a2

a1 a1A A

projected ât projected ât

45 / 51

L1 vs. L2 projection

ât := arg min
a∈A
‖ât − a‖2.

ât ât

a2 a2

a1 a1A A

projected ât projected ât
45 / 51

Convergence of online gradient descent

Theorem

Assume ‖∇`t(a)‖ ≤ L for all t, and let ‖A‖ = maxa,a′∈A ‖a− a′‖.

Then when ηt = 1√
t

‖A‖
L the regret is bounded by:

Rn ≤
3

2
‖A‖L

√
n,

The algorithm can be generalized to online mirror descent, which will work
for any pair of dual norms

46 / 51

Convergence of online gradient descent

Theorem

Assume ‖∇`t(a)‖ ≤ L for all t, and let ‖A‖ = maxa,a′∈A ‖a− a′‖.

Then when ηt = 1√
t

‖A‖
L the regret is bounded by:

Rn ≤
3

2
‖A‖L

√
n,

The algorithm can be generalized to online mirror descent, which will work
for any pair of dual norms

46 / 51

Exponentiated Gradient [Kivinen & Warmuth 1997]

A special version of online mirror descent

ât+1,k :=
1

Zt
ât,ke

−ηt(∇`t(ât))k , k = 1, . . . , d

Requires positive weights, but can be applied in a general setting by
doubling features.
Works much better than online gradient descent when:

d is very large (many features)
only a small number of features is relevant.

Theorem

Let A = ∆d. Assume ‖∇`t(a)‖∞ ≤ L for all t.

Then when â1 = (1d , . . . ,
1
d), ηt = 1√

t

√
2 ln d
L , the regret is bounded by:

Rn ≤ L
√

2n ln d

47 / 51

Extensions

Concept drift: competing with drifting parameter vectors.

Partial feedback: contextual multi-armed bandit problems.

Improvements for some (strongly convex, exp-concave) loss functions.

Infinite-dimensional feature spaces via kernel trick.

Learning matrix parameters (matrix norm regularization, positive
definiteness, permutation matrices).

. . .

48 / 51

Outline

1 Statistical learning theory

2 Online learning

3 Finite action classes

4 Convex action spaces

5 Conclusions

49 / 51

Conclusions

A theoretical framework for learning without stochastic assumption.

Performance bounds match those in the stochastic setting, but often
simpler to prove.

Easy to generalize to changing environments (concept drift), partial
information (multiarmed bandits), etc.

Results in online algorithms directly applicable to large-scale learning
problems.

Most of currently used offline learning algorithms employ online
learning as an optimization routine.

50 / 51

References

Hazan, E.: Introduction to Online Convex Optimization. Foundations and Trends® in
Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

Shalev-Schwartz, S.: Online Learning and and Online Convex Optimization. Foundations
and Trends® in Machine Learning, vol. 4, no. 2, pp. 107–194, 2011.

Cesa-Bianchi, N., Lugosi, G.: Prediction, Learning and Games. Cambridge University
Press, 2006.

Beck, A., Teboulle, M.: Mirror Descent and Nonlinear Projected Subgradient Methods for
Convex Optimization. Operations Research Letters, vol. 31, no. 3, pp. 167–185, 2003.

Zinkevich, M.: Online Convex Programming and Generalized Infinitesimal Gradient
Ascent. International Conference on Machine Learning (ICML), pp. 928-936, AAAI Press,
2003.

Kivinen, J., Warmuth, M. K.: Exponentiated Gradient Versus Gradient Descent for Linear
Predictors. Information and Computation, vol. 132, no. 1, pp. 1–63, 1997.

Littlestone, N., Warmuth, M. K.: The Weighted Majority Algorithm. Information and
Computation, vol. 108, no. 2, pp. 212–261, 1994.

Blumer A., Ehrenfeucht, A., Haussler, D., Warmuth, M.: Occam’s Razor. Information
Processing Letters, vol. 24, no. 6, pp. 377–380, 1987.

Nemirovski, A. S., Yudin, D. B.: Problem Complexity and Efficiency in Optimization.
John Wiley and Sons, 1983.

Vapnik, V. N., Chervonenkis, A. Ya.: On the Uniform Convergence of Relative
Frequencies of Events to Their Probabilities. Theory of Probability and its Applications,
vol. 16, no. 2, pp. 264–280, 1971.

51 / 51

	Statistical learning theory
	Online learning
	Finite action classes
	Convex action spaces
	Conclusions

