
Assessing the quality of LLM-generated code is challenging due to the unique
requirements of integrating concise snippets into a larger codebase.
Traditional evaluation methods, such as unit or E2E tests, are not feasible.
Evaluation will instead involve designing diverse test scenarios, reviewed by
five domain experts for quality and functionality, supplemented by
validation from another LLM to ensure a robust assessment.

C
lie

nt Welcome Family data

Rejection

Insurance 
selection Discount code Summary

Observability and tracing are critical for understanding, monitoring, and
optimizing multi-agent systems, enabling effective troubleshooting and
performance evaluation.
Evaluating LLM-generated code remains complex, requiring robust
frameworks and domain expertise.
The model offers potential for future development, including integrating
additional Ferryt coding aspects to expand its applicability.

Low-Code AI
Improving Code Generation Accuracy in Low-Code

Platforms with Hierarchical Contexts

Introduction

The project is being carried out in collaboration with DOMDATA and their
Ferryt platform. Our project has also been awarded a grant under the
Study@Research program.
Low-code and no-code platforms have gained popularity as cost-effective
solutions to the scarcity of skilled developers. These systems enable users to
build applications with little or no programming, focusing on business logic
rather than technical complexities. They accelerate development significantly
—often 5 to 10 times faster—by offering tools like data model designers, GUI
builders, API integrations, and BPMN-based process editors. Despite their
advantages, low-code platforms still often require some technical knowledge.
Our project addresses this by developing a multi-agent AI plugin to transform
Ferryt low-code platform into true no-code solution.

Context-Aware Graph Search

Multi-agent Architecture

Key Nodes in the multi-agent system:
start: Entry point.
classify_prompt: Decides the type of user query (code generation or
documentation content) using a language model.
call_csi_rag: Accesses Ferryt Navigator's documentation and API,
leveraging RAG architecture and the BIELIK model.
translate_pl_to_eng: Translates the user query into English, as codestral
has limited understanding of Polish.
classify_code_gen: Determines the type of code to generate:

JavaScript validation code (e.g., PESEL or NIP validation).
C# business rule code (e.g., making a field non-editable based on
BPMN diagram context).

generate_rule: Extracts relevant nodes from a BPMN diagram, leveraging
research methods, to generate C# business rules using a language model.
generate_validation: Generates JavaScript validators.
translate_eng_to_pl: Translates the response back into Polish.
end: Exit point.

Evaluation

Supervisor: prof. UAM dr hab. Patryk Żywica
Team: Dawid Korzępa, Arden Wołowiec, Anna Śmigiel, Krzysztof Raczyński

Conclusions

Actual information flow in the multi-agent system, generated using the
LangGraph framework based on real code.

Example BPMN diagram

Clustered context graph

The research investigates leveraging user prompts to extract contextual
information from nodes in BPMN (Business Process Model and Notation)
diagrams for automatic code generation in low-code platforms. Unlike static
knowledge-based approaches, our method dynamically queries the BPMN
graph using natural language prompts processed by a Large Language Model
(LLM). The extracted contextual information supports dynamic process
modeling without requiring a predefined knowledge base.
In this approach, BPMN diagrams are represented as graphs, where nodes
denote tasks, gateways, and events, and edges depict transitions. The graph is
decomposed into community structures using Graph Spectral Clustering,
which analyzes the spectrum (eigenvalues) of the similarity matrix to identify
clusters of densely connected nodes. 

Finding relevant nodes in a graph using an LLM is enhanced by parallel
processing with the MapReduce framework, enabling simultaneous searches
across graph communities. This approach boosts performance, with user
prompts refining results for real-time BPMN graph querying, surpassing
traditional methods like RAG and GraphRAG that rely on static databases.

We used Bielik-11B-v2.2-Instruct-FP8 for context extraction, Codestral-22B-
v0.1 for code generation, LangGraph 0.2.39 for multi-agent architecture,
LangChain 0.3.0 for LLM integration, and Ollama for improved model
interaction.

Actual Use Case Example


