Sobolev embeddings and $(\Phi, 1)$ -summing operators

Krystian Kazaniecki Uniwersytet Warszawski

The talk will be devoted to the study of absolutely summing properties of the Sobolev embedding operator. Recall that a continuous linear operator $T: X \to Y$ between Banach sequence spaces is said to be $(\Phi, 1)$ -summing if there exists a constant C > 0 such that for all $x_1, ..., x_n \in X$,

$$\|(||Tx_i||_Y)_{i=1}^n\|_{\ell_{\Phi}} \le C \sup_{x^* \in B_{X^*}} \sum_{i=1}^n |x^*(x_i)|,$$

where B_{X^*} denotes a unit ball in the dual space of X.

We know that Sobolev embedding operator is (p, 1)-summing for $p > p_0 = \max\{\frac{2d}{2k+d}, p\}$. I will show how from the values of (p, 1)-summing norms and extrapolation methods we obtain that the Sobolev embedding is $(\Phi, 1)$ -summing.

Theorem. Let $d \in \mathbb{N} \setminus \{0,1\}$, $k \in \{1,2,\ldots,d-1\}$, $1 \leq p < 2$ and p < d/k. Then the Sobolev embedding $S_{d,k,p} : W^{k,p}(\mathbb{T}^d) \to L_s(\mathbb{T}^d)$, where s = 1/p - k/d, is $(\Phi, 1)$ -summing operator for $\Phi(x) = \frac{x^{p_0}}{|\ln(x)|^{\gamma}}$ and $0 \leq x \leq \frac{1}{2}$, where $p_0 = \max\{\frac{2d}{2k+d}, p\}$, $\gamma > p_0(\frac{2}{p}-1)$.

The talk is based on a joint work with A. Pawlewicz and M. Wojciechowski.